K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A,ĐKXĐ:x;y\ge0\)

\(A=\sqrt{xy}-2\sqrt{y}-5\sqrt{x}+10\)

\(=\sqrt{y}\left(\sqrt{x}-2\right)-5\left(\sqrt{x}-2\right)\)

\(=\left(\sqrt{x}-2\right)\left(\sqrt{y}-5\right)\)

\(ĐKXĐ:x;y\ge0\)

\(B=a\sqrt{x}+b\sqrt{y}-\sqrt{xy}-ab\)

\(=\left(a\sqrt{x}-\sqrt{xy}\right)+\left(b\sqrt{y}-ab\right)\)

\(=\sqrt{x}\left(a-\sqrt{y}\right)+b\left(\sqrt{y}-a\right)\)

\(=\sqrt{x}\left(a-\sqrt{y}\right)-b\left(a-\sqrt{y}\right)\)

\(=\sqrt{x}\left(a-\sqrt{y}\right)-b\left(a-\sqrt{y}\right)\)

\(=\left(a-\sqrt{y}\right)\left(\sqrt{x}-b\right)\)

17 tháng 8 2018

mn ơi giúp mình với ạ

cảm ơn mỏi người ạ =))

AH
Akai Haruma
Giáo viên
17 tháng 8 2018

Bài 1:

Để căn thức có nghĩa thì:

a)

\(-5x-10\geq 0\Leftrightarrow 5x+10\leq 0\Leftrightarrow x\leq -2\)

b)

\(x^2-3x+2\geq 0\Leftrightarrow (x-1)(x-2)\geq 0\)

\(\Leftrightarrow \left[\begin{matrix} x-1\geq 0; x-2\geq 0\\ x-1\leq 0; x-2\leq 0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x\geq 2\\ x\leq 1\end{matrix}\right.\)

c) \(\frac{x+3}{5-x}\geq 0\)

\(\Leftrightarrow \left[\begin{matrix} x+3\geq 0; 5-x>0\\ x+3\leq 0; 5-x< 0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} -3\leq x< 5\\ -3\geq x>5 (\text{vô lý})\end{matrix}\right.\)

\(\Rightarrow -3\leq x< 5\)

d) \(-x^2+4x-4\geq 0\)

\(\Leftrightarrow -(x^2-4x+4)\geq 0\Leftrightarrow -(x-2)^2\geq 0\)

\((x-2)^2\geq 0, \forall x\in\mathbb{R}\)

\(\Rightarrow x=2\)

21 tháng 7 2016

a, \(x-\sqrt{x}\)\(\sqrt{x}.\left(\sqrt{x}-1\right)\)

b, 3x+6\(\sqrt{x}\)\(\sqrt{x}.\left(3\sqrt{x}+6\right)\)

c, x+2\(\sqrt{x}+1\)\(\left(\sqrt{x}\right)^2+2\sqrt{x}+1=\left(\sqrt{x}+1\right)^2\)

d, \(3x-5\sqrt{x}+2=3x-3\sqrt{x}-2\sqrt{x}+2\)

=\(3\sqrt{x}.\left(\sqrt{x}-1\right)-2.\left(\sqrt{x}-1\right)\)

=\(\left(3\sqrt{x}-2\right).\left(\sqrt{x}-1\right)\)

AH
Akai Haruma
Giáo viên
17 tháng 7 2018

a) ĐK: \(x\geq \frac{1}{2}\)

Ta có: \(\sqrt{2x-1}-\sqrt{x+1}=2x-4\)

\(\Leftrightarrow \frac{(2x-1)-(x+1)}{\sqrt{2x-1}+\sqrt{x+1}}=2(x-2)\)

\(\Leftrightarrow \frac{x-2}{\sqrt{2x-1}+\sqrt{x+1}}=2(x-2)\)

\(\Leftrightarrow (x-2)\left(\frac{1}{\sqrt{2x-1}+\sqrt{x+1}}-2\right)=0\)

\(\Rightarrow \left[\begin{matrix} x-2=0\leftrightarrow x=2\\ \frac{1}{\sqrt{2x-1}+\sqrt{x+1}}=2(*)\end{matrix}\right.\)

Đối với $(*)$:

\(x\geq \frac{1}{2}\Rightarrow \sqrt{2x-1}+\sqrt{x+1}\geq \sqrt{\frac{1}{2}+1}>1\)

\(\Rightarrow \frac{1}{\sqrt{2x-1}+\sqrt{x+1}}< 1\)

Do đó $(*)$ vô nghiệm

Vậy pt có nghiệm duy nhất $x=2$

AH
Akai Haruma
Giáo viên
18 tháng 7 2018

b) ĐK:.....

\(\sqrt{2x^2-3x+10}+\sqrt{2x^2-5x+4}=x+3\)

TH1:

\(\sqrt{2x^2-3x+10}=\sqrt{2x^2-5x+4}\)

\(\Rightarrow 2x^2-3x+10=2x^2-5x+4\)

\(\Rightarrow 2x+6=0\Rightarrow x=-3\) (thử lại thấy không thỏa mãn)

TH2: \(\sqrt{2x^2-3x+10}\neq \sqrt{2x^2-5x+4}\), tức là \(x\neq -3\)

PT ban đầu tương đương với:

\(\frac{(2x^2-3x+10)-(2x^2-5x+4)}{\sqrt{2x^2-3x+10}-\sqrt{2x^2-5x+4}}=x+3\)

\(\Leftrightarrow \frac{2(x+3)}{\sqrt{2x^2-3x+10}-\sqrt{2x^2-5x+4}}=x+3\)

\(\Leftrightarrow \frac{2}{\sqrt{2x^2-3x+10}-\sqrt{2x^2-5x+4}}=1\) (do \(x\neq -3\) )

\(\Rightarrow \sqrt{2x^2-3x+10}-\sqrt{2x^2-5x+4}=2\)

\(\Rightarrow \sqrt{2x^2-3x+10}=2+\sqrt{2x^2-5x+4}\)

Bình phương 2 vế:

\(2x^2-3x+10=4+2x^2-5x+4+4\sqrt{2x^2-5x+4}\)

\(\Leftrightarrow x+1=2\sqrt{2x^2-5x+4}\)

\(\Rightarrow (x+1)^2=4(2x^2-5x+4)\)

\(\Rightarrow 7x^2-22x+15=0\Rightarrow \left[\begin{matrix} x=\frac{15}{7}\\ x=1\end{matrix}\right.\) (thử đều thấy t/m)

Vậy...........