K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2019

a) \(xy+y-2x-2\)

\(=y\left(x+1\right)-2\left(x+1\right)\)

\(=\left(x+1\right)\left(y-2\right)\)

b) \(xy+1+x+y\)

\(=y\left(x+1\right)+\left(x+1\right)\)

\(=\left(x+1\right)\left(y+1\right)\)

c) \(x\left(x-1\right)+y\left(x-1\right)+z\left(x-1\right)\)

\(=\left(x-1\right)\left(x+y+z\right)\)

1 tháng 9 2019

a) \(xy+y-2x-2\)

\(=y\left(x+1\right)-2\left(x+1\right)\)

\(=\left(x+1\right)\left(y-2\right)\)

b) \(xy+1+x+y\)

\(=y\left(x+1\right)+\left(x+1\right)\)

\(=\left(x+1\right)\left(y+1\right)\)

c) \(x^2+xy-x-y+xz-z\)

\(=\left(x^2-x\right)+\left(xy-y\right)+\left(xz-z\right)\)

\(=x\left(x-1\right)+y\left(x-1\right)+z\left(x-1\right)\)

\(=\left(x-1\right)\left(x+y+z\right)\)

5 tháng 10 2015

a) 

5x-5y+ax-ay = 5(x-y) +a(x-y) = (x-y)(5+a)

b) a^3 -a^2x-ay+xy = a^2(a-x) -y(a-x) = (a-x)(a^2-y)

c) xy(x+y) +yz(y+z) +xz(x+z) +2xyz = x^2.y+xy^2 +y^2.z+xz^2 +x^2.z+xz^2 +2xyz

= (x^2.y+x^2.z)+(xy^2+xz^2+2xyz)+(y^2.z+yz^2) = x^2(y+z) +x.(y+z)^2 +yz(y+z)

=(y+z)(x^2+x+yz)

7 tháng 10 2019

a,  \(xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)+2xyz\)\(=x^2y+xy^2+y^2z+yz^2+x^2z+xz^2+2xyz\)

\(=\left(x^2y+xy^2+xyz\right)+\left(x^2z+xz^2+xyz\right)+\left(y^2z+yz^2\right)\)

\(=xy\left(x+y+z\right)+xz\left(x+z+y\right)+yz\left(y+z\right)\)

\(=x\left(x+y+z\right)\left(y+z\right)+yz\left(y+z\right)\)

\(=\left(y+z\right)\left(x^2+xy+xz+yz\right)\)

\(=\left(y+z\right)\left[x\left(x+z\right)+y\left(x+z\right)\right]\)

\(=\left(y+z\right)\left(x+z\right)\left(x+y\right)\)

b, \(2x^2+2y^2-x^2z+z-y^2z-2\)

\(=\left(2x^2-x^2z\right)+\left(2y^2-y^2z\right)-\left(2-z\right)\)

\(=x^2\left(2-z\right)+y^2\left(2-z\right)-\left(2-z\right)\)

\(=\left(2-z\right)\left(x^2+y^2-1\right)\)

15 tháng 7 2016

Câu a:

Cách 1:
\(xy+y-2x-2\)
\(\Leftrightarrow\left(xy+y\right)-\left(2x+2\right)\)
\(\Leftrightarrow y\left(x+1\right)-2\left(x+1\right)\)
\(\Leftrightarrow\left(x+1\right)\left(y-2\right)\)

Cách 2:
\(xy+y-2x-2\)
\(\Leftrightarrow\left(xy-2x\right)+\left(y-2\right)\)
\(\Leftrightarrow x\left(y-2\right)+\left(y-2\right)\)
\(\Leftrightarrow\left(x+1\right)\left(y-2\right)\)

15 tháng 7 2016

a)xy+y-2x-2

y(x + 1) - 2(x + 1)

<=> (y - 2)(x + 1)

b) x + x + x + 1

<=> 3x + 1

c)x3-3x2+3x-9 

<=>(x - 3 ) 3

d)xy+xz+y2+yz

<=> x(y + z) + y(y + z)

<=> (x + y)(y + z)

f)x2+xy+xz-x-y-z

<=> x(x - y -z +1

14 tháng 9 2016

x2 - x - y2 - y

= (x - y)(x + y) - (x + y)

= (x + y)(x - y - 1)

***

9x2 + y2 - 16z2 + 6xy

= (3x + y)2 - (4z)2

= (3x + y - 4z)(3x + y + 4z)

***

a3 - a2x - ay + xy

= a2(a - x) - y(a - x)

= (a - x)(a2 - y)

***

2x2 - 8y2 + 3x + 6y

= 2(x2 - 4y2) + 3(x + 2y)

= 2(x - 2y)(x + 2y) + 3(x + 2y)

= (x + 2y)(2x - 4y + 3)

***

xy(x + y) + yz(y + z) + xz(x + z) + 2xyz

= xy(x + y + z) + yz(x + y + z) + xz(x + z)

= y(x + y + z)(x + z) + xz(x + z)

= (x + z)(xy + y2 + yz + xz)

= (x + z)[y(x + y) + z(x + y)]

= (x + z)(x + y)(y + z) 

nhờ giải giupws em với a 1. Phân tích các đa thức sau thành nhân tử: a)     5x2 – 10xy b)    3x(x – y)  –  6(x – y) c)     2x(x – y) – 4y(y – x) d)    9x2 – 9y2 e)     x2 – xy – x + y f)      xy – xz – y + z 2. Phân tích các đa thức sau thành nhân tử:  a)a2 – 4b2                                        b) x2 – y2 + 6y -...
Đọc tiếp

nhờ giải giupws em với a

1. Phân tích các đa thức sau thành nhân tử:

a)     5x2 – 10xy

b)    3x(x – y)    6(x – y)

c)     2x(x – y) – 4y(y – x)

d)    9x2 – 9y2

e)     x2 – xy – x + y

f)      xy – xz – y + z

2. Phân tích các đa thức sau thành nhân tử:

 a)a2 – 4b2                                        b) x2 – y2 + 6y - 9                                         

c) (2a + b)2 – a2                     d) 16(x – 1)2 – 25(x + y)2

e)x2 + 10x + 25                f) 25x2 – 20xy + 4y2

      g)9x4 + 24x2 + 16             h) x3 – 125

      i)x6 – 1                            k) x3 + 15x2 + 75x + 125

3. Tìm x biết :

a) 3x2 + 8x = 0              b) 9x2 – 25 = 0          c) x3 – 16x = 0     d) x3 + x = 0.

4. Chứng minh rằng với mọi số nguyên a thì: a3 – a chia hết cho 6

 

1
19 tháng 12 2023

Bài `1`

\(a,5x^2-10xy=5x\left(x-2y\right)\\ b,3x\left(x-y\right)-6\left(x-y\right)=\left(x-y\right)\left(3x-6\right)\\ =3\left(x-y\right)\left(x-2\right)\\ c,2x\left(x-y\right)-4y\left(y-x\right)=2x\left(x-y\right)+4y\left(x-y\right)\\ =\left(x-y\right)\left(2x+4y\right)=2\left(x-y\right)\left(x+2y\right)\\ d,9x^2-9y^2=\left(3x\right)^2-\left(3y\right)^2=\left(3x-3y\right)\left(3x+3y\right)\\ f,xy-xz-y+z=\left(xy-xz\right)-\left(y-z\right)\\ =x\left(y-z\right)-\left(y-z\right)=\left(y-z\right)\left(x-1\right)\)

Bài `3`

\(a,3x^2+8x=0\\ \Leftrightarrow x\left(3x+8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\3x+8=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\3x=-8\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{8}{3}\end{matrix}\right.\)

\(b,9x^2-25=0\\ \Leftrightarrow\left(3x\right)^2-5^2=0\\ \Leftrightarrow\left(3x-5\right)\left(3x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}3x-5=0\\3x+5=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}3x=5\\3x=-5\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=-\dfrac{5}{3}\end{matrix}\right.\)

\(c,x^3-16x=0\\ \Leftrightarrow x\left(x^2-16\right)=0\\ \Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\\x+4=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)

\(d,x^3+x=0\\ \Leftrightarrow x\left(x^2+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2+1\in\varnothing\\x=0\end{matrix}\right.\Rightarrow x=0\)