Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(xy+y-2x-2\)
\(=y\left(x+1\right)-2\left(x+1\right)\)
\(=\left(x+1\right)\left(y-2\right)\)
b) \(xy+1+x+y\)
\(=y\left(x+1\right)+\left(x+1\right)\)
\(=\left(x+1\right)\left(y+1\right)\)
c) \(x\left(x-1\right)+y\left(x-1\right)+z\left(x-1\right)\)
\(=\left(x-1\right)\left(x+y+z\right)\)
\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)
\(1,\\ 1,=15\left(x+y\right)\\ 2,=4\left(2x-3y\right)\\ 3,=x\left(y-1\right)\\ 4,=2x\left(2x-3\right)\\ 2,\\ 1,=\left(x+y\right)\left(2-5a\right)\\ 2,=\left(x-5\right)\left(a^2-3\right)\\ 3,=\left(a-b\right)\left(4x+6xy\right)=2x\left(2+3y\right)\left(a-b\right)\\ 4,=\left(x-1\right)\left(3x+5\right)\\ 3,\\ A=13\left(87+12+1\right)=13\cdot100=1300\\ B=\left(x-3\right)\left(2x+y\right)=\left(13-3\right)\left(26+4\right)=10\cdot30=300\\ 4,\\ 1,\Rightarrow\left(x-5\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\\ 2,\Rightarrow\left(x-7\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=7\\x=-2\end{matrix}\right.\\ 3,\Rightarrow\left(3x-1\right)\left(x-4\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=4\end{matrix}\right.\\ 4,\Rightarrow\left(2x+3\right)\left(2x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
a)x2-xy-x+y
=(x2-x)-(xy-y)
=x(x-1)-y(x-1)
=(x-1)(x-y)
b) xy+4-x2+2y
=(4-x2)+(xy+2y)
=(2-x)(x+2)+y(x+2)
=(x+2)(2-x+y)
c) xy+y-2(x+1)
=y(x+1)-2(x+1)
=(x+1)(y-2)
d) 5(x-y)+ax-ay
=5(x-y)+a(x-y)
=(x-y)(5+a)
#H
Trả lời:
a, x2 - xy - x + y
= ( x2 - xy ) - ( x - y )
= x ( x - y ) - ( x - y )
= ( x - y ) ( x - 1 )
b, xy + 4 - x2 + 2y
= ( xy + 2y ) - ( x2 - 4 )
= y ( x + 2 ) - ( x - 2 ) ( x + 2 )
= ( x + 2 ) ( y - x + 2 )
c, xy + y - 2 ( x + 1 )
= y ( x + 1 ) - 2 ( x + 1 )
= ( x + 1 ) ( y - 2 )
d, 5 ( x - y ) + ax - ay
= 5 ( x - y ) + a ( x - y )
= ( 5 + a ) ( x - y )
1. C. \(16x^2\left(x-y\right)\)\(-10y\left(y-1\right)\)\(=-2\left(y-x\right)\)\(\left(8x^2+5y\right)\)
2. C. \(\left(x-y\right)\left(x-y-3\right)\)
3. D. \(\left(x-2\right)\left(x+1\right)\)
4. C. \(y\left(x-2\right)\)\(5x\left(x-3\right)\)
5. D. \(3\left(x-2y\right)\)
1. Trong các kết quả sau kết quả nào sai
A. -17x^3y-34x^2y^2+51xy^3=17xy(x^2+2xy-3y^2)
B. x(y-1) +3(y-1)= -(1-y)(x+3)
C. 16x^2(x-y)-10y(y-1)=-2(y-x)(8x^2+5y)
2. Đa thức (x-y)^2+3(y-x) được phân tích thành nhân tử là:
A. (x+y)(x-y+3)
B. (x-y)(2x-2y+3)
C. (x-y)(x-y-3)
D. Cả 3 câu đều sai
3. Kết quả phân tích đa thức x(x-2)+(x-2) thành nhân tử
A. (x-2)x
B. (x-2)^2.x
C. x(2x-4)
D. (x-2)(x+1)
4. Kết quả phân tích 5x^2(xy-2y)-15x(xy-2y) thành nhân tử
A. (xy-2y)(5x^2-15x^2)
B. y(x-2)(5x^2-15x^2)
C. y(x-2)5x(x-3)
D. (xy-2y)5x(x-3)
5. Kết quả phân tích đa thức 3x-6y thành nhân tử là
A. 3(x-6y)
B. 3(3x-y)
C. 3(3x-2y)
D. 3(x-2y)
a/ \(\left(x-y\right)\left(z-x\right)\left(z-y\right)\)
b/ \(\left(1-y\right)\left(y-x\right)\)
a. \(\left(x-y\right)\left(z-x\right)\left(z-y\right)\)
b. \(\left(1-y\right)\left(y-x\right)\)
Ta có: x2 + y2 - x2y2 + xy - x - y
= (x2 - x2y2) + (y2 - y) + (xy - x)
= - x2(y2 - 1) + y(y - 1) + x(y - 1)
= - x2(y + 1)(y - 1) + (y - 1)(x + y)
= (y - 1)(x + y - x2y - x2)
= (y - 1)[- (x2 - x) - (x2y - y)]
= - (y - 1)[x(x - 1) + y(x2 - 1)]
= - (y - 1)[x(x - 1) + y(x + 1)(x - 1)]
= - (y - 1)(x - 1)[x + y(x + 1)]
= - (y - 1)(x - 1)(x + xy +y)
Ta có: x2 + y2 - x2y2 + xy - x - y
= (x2 - x2y2) + (y2 - y) + (xy - x)
= - x2(y2 - 1) + y(y - 1) + x(y - 1)
= - x2(y + 1)(y - 1) + (y - 1)(x + y)
= (y - 1)(x + y - x2y - x2)
= (y - 1)[- (x2 - x) - (x2y - y)]
= - (y - 1)[x(x - 1) + y(x2 - 1)]
= - (y - 1)[x(x - 1) + y(x + 1)(x - 1)]
= - (y - 1)(x - 1)[x + y(x + 1)]
= - (y - 1)(x - 1)(x + xy +y)
Ai trên 10 điểm hỏi đáp thì mình nha mình đang cần gấp chỉ còn 59 điểm là tròn rồi mong các bạn hỗ trợ mình sẽ đền bù xứng đáng
x2 - x - y2 - y
= (x - y)(x + y) - (x + y)
= (x + y)(x - y - 1)
***
9x2 + y2 - 16z2 + 6xy
= (3x + y)2 - (4z)2
= (3x + y - 4z)(3x + y + 4z)
***
a3 - a2x - ay + xy
= a2(a - x) - y(a - x)
= (a - x)(a2 - y)
***
2x2 - 8y2 + 3x + 6y
= 2(x2 - 4y2) + 3(x + 2y)
= 2(x - 2y)(x + 2y) + 3(x + 2y)
= (x + 2y)(2x - 4y + 3)
***
xy(x + y) + yz(y + z) + xz(x + z) + 2xyz
= xy(x + y + z) + yz(x + y + z) + xz(x + z)
= y(x + y + z)(x + z) + xz(x + z)
= (x + z)(xy + y2 + yz + xz)
= (x + z)[y(x + y) + z(x + y)]
= (x + z)(x + y)(y + z)
a: =(x+y)^2*(x-y)+x(y-x)
=(x-y)[(x+y)^2-x]
dấu * là j vậy bạn