Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài a) bn trên đã dẫn link cho bn r
bài b)
Đặt x-y=a;y-z=b;z-x=c
\(=>a+b+c=x-y+y-z+z-x=0\)
\(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3=a^3+b^3+c^3\)
Theo câu a)\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\) (do a+b+c=0)
\(=>a^3+b^3+c^3=3abc=>\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3=3\left(x-y\right)\left(y-z\right)\left(z-x\right)\)
a) Ta có :
\(a^3+b^3+c^3-3abc\)
\(\Rightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)
\(\Rightarrow\left(a+b+c\right)\left[\left(a+b^2\right)-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
P/s tham khảo nha
hok tốt
a) = a3+b3+c3 +3a2b +3ab2 -3ab(a+b) - 3abc
= (a+b)3+c3-3ab(a+b)-3abc (áp dụng A3+B3 ta có)
=(a+b+c) ( (a+b)2 - (a+b)c +c2) - 3ab(a+b+c)
=(a+b+c) ( (a+b)2 - (a+b)c +c2 - 3ab) (nhân tử chung là a+b+c)
=(a+b+c) ( a2+2ab+b2- ac-bc +c2 -3ab)
=(a+b+c) (a2+b2+c2-ab-ac-bc)
Phần b tương tự
Bài 1 :
a) xy(x+y)+yz(y+z)+xz(x+z)+2xyz
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz
= xy(x + y) + yz(y + z + x) + xz(x + z + y)
= xy(x + y) + z(x + y + z)(y + x)
= (x + y)(xy + zx + zy + z²)
= (x + y)[x(y + z) + z(y + z)]
= (x + y)(y + z)(z + x)
b) \(x^3-x+3x^2y+3xy^2+y^3-x-y\)
\(=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\)
\(=\left(x+y\right)^3-\left(x+y\right)\)
\(=\left(x+y\right)\left[\left(x+y\right)^2-1\right]\)
\(=\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\)
Đã có kết quả
Bài 1,chữa phần a
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
=[xy(x+y)+xyz]+[yz(y+z)+xyz]+xz(x+z)
=xy(x+y+z)+yz(x+y+z)+xz(x+z)
=y(x+y+z)(x+z)+xz(x+z)
=(x+z)(xy+y2+yz+xz)
=(x+z)(x+y)(y+z)
Chữa phần b
x3-x+3x2y+3xy2+y3-y
=(x+y)(x+y-1)(x+y+1)
Bài2
a3+b3+c3=(a+b)3-3ab(a+b)+c3=-c3-3ab(-c)+c3=3abc
Ai làm đúng như này ớ sẽ k
a) \(a^3+b^3-c^3+3abc\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)-c^3+3abc\)
\(=\left(a+b-c\right)\left[\left(a+b\right)^2+\left(a+b\right)c+c^2\right]-3ab\left(a+b-c\right)\)
\(=\left(a+b-c\right)\left(a^2+2ab+b^2+ca+bc+c^2-3ab\right)\)
\(=\left(a+b-c\right)\left(a^2+b^2+c^2-ab+bc+ca\right)\)
b) \(\left(x+y+z\right)^3-x^3-y^3-z^3\)
\(=\left(x+y+z-x\right)\left[\left(x+y+z\right)^2+\left(x+y+z\right)x+x^2\right]-\left(y+z\right)\left(y^2-yz+z^2\right)\)
\(=\left(y+z\right)\left[x^2+y^2+z^2+2\left(xy+yz+zx\right)+x^2+xy+zx+x^2-y^2+yz-z^2\right]\)
\(=\left(y+z\right)\left(3x^2+3xy+3yz+3zx\right)\)
\(=3\left(y+z\right)\left[x\left(x+y\right)++z\left(x+y\right)\right]\)
\(=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
\(a)a^3+b^3-c^3+3abc=\left(a+b\right)^3-3ab\left(a+b\right)-c^3+3abc\)
\(=\left(a+b-c\right)\left[\left(a+b\right)^2+\left(a+b\right)c+c^2\right]-3ab\left(a+b-c\right)\)
\(=\left(a+b-c\right)\left(a^2+2ab+b^2+ac+bc+c^2-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab+bc+ac\right)\)