Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 3x^2 - 6x - x+2=3x(x-2)-(x-2)=(x-2)(3x-1)
b) ax(x-a)-(x-a)=(x-a)(ax-1)
a) \(3x^2-7x+2\)
\(=3x^2-6x-x+2\)
\(=3x\left(x-2\right)-\left(x-2\right)\)
\(=\left(x-2\right)\left(3x-1\right)\)
b) \(a\left(x^2+1\right)-x\left(a^2+1\right)\)
\(=ax^2+a-a^2x-x\)
\(=\left(ax^2-a^2x\right)-\left(x-a\right)\)
\(=ax\left(x-a\right)-\left(x-a\right)\)
\(=\left(x-a\right)\left(ax-1\right)\)
\(A=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-20\)
\(=\left(x^2+5x+4\right)\cdot\left(x^2+5x+6\right)-20\)
Đặt: \(x^2+5x+5=a\)Khi đó ta có:
\(A=\left(a-1\right)\left(a+1\right)-20=a^2-21=\left(a-\sqrt{21}\right)\left(a+\sqrt{21}\right)\)
tự thay trở lại
Dễ mà ^_^: 3x2-7x+2=3x2 -x-6x+2=(3x2-x)-(6x-2)=x(3x-1)-2(3x-1)=(3x-1)(x-2)
1) 3x2y+6xy+3y= 3y.(x2+2x+1) = 3y.(x+1)2
2) 12x-4x2-9+a2 = a2-(4x2-12x+9)= a2-(2x-3)2= (a+2x-3).(a-2x+3)
3) x3-7x-6 = x3-2x2+2x2-4x-3x+6 = x2.(x-2)+2x.(x-2)-3.(x-2)= (x-2).(x2+2x-3) = (x-2).(x2+x-3x-3)= (x-2).(x+1).(x-3)
\(x^2\left(x+1\right)-\left(x+1\right)\left(3x+1\right)+7x-x^2\)
\(=x^3+x^2-3x^2-4x-1+7x-x^2\)
\(=x^3-3x^2+3x-1\)
\(=\left(x-1\right)^3\)
C1
a) -7x(3x-2)=-21x^2+14x
b) 87^2+26.87+13^2=87^2+2.13.87+13^2=(87+13)^2=100^2
C2
a) (x-5)(x+5)
b)3x(x+5)-2(x+5)=(3x-2)(x+5)=0
\(\Rightarrow\left[\begin{array}{nghiempt}3x-2=0\\x+5=0\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{2}{3}\\x=-5\end{array}\right.\)
Vậy S={-5;2/3}
C3:
a)3x^3-2x^2+2=(x+1)(3x^2-5x-5)-3
b) Để A chia hết cho B=> x+1\(\inƯ\left(-3\right)\)
\(\Rightarrow\begin{cases}x+1=3\\x+1=-3\\x+1=1\\x+1=-1\end{cases}\)\(\Rightarrow\begin{cases}x=2\\x=-4\\x=0\\x=-2\end{cases}\)
\(3x^2+7x+2\)
\(=3x^2+6x+x+2\)
\(=3x\left(x+2\right)+\left(x+2\right)\)
\(=\left(3x+1\right)\left(x+2\right)\)
\(3x^2+7x+2\)
\(=3x^2+x+6x+2\)
\(=x\left(3x+1\right)+2\left(3x+1\right)\)
\(=\left(3x+1\right).\left(x+2\right)\)
Ta có : \(M=\left(x^2+3x+2\right)\left(x^2+7x+12\right)+1=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)
\(=\left[\left(x+1\right)\left(x+4\right)\right].\left[\left(x+2\right)\left(x+3\right)\right]+1=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)
Đặt \(t=x^2+5x+5\) \(\Rightarrow M=\left(t-1\right)\left(t+1\right)+1=t^2-1+1=t^2\)
Vậy \(M=\left(x^2+5x+5\right)^2\)
\(3x^2-7x+2=3x^2-6x-x+2=3x\left(x-2\right)-\left(x-2\right)=\left(x-2\right)\left(3x-1\right)\)
bằng phương pháp nào bn??? 565747556756765765756785685687357634634645756876876