Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải:
a) x3 + 2x2y + xy2– 9x = x(x2 +2xy + y2 – 9)
= x[(x2 + 2xy + y2) – 9]
= x[(x + y)2 – 32]
= x(x + y – 3)(x + y + 3)
b) 2x – 2y – x2 + 2xy – y2 = (2x – 2y) – (x2 – 2xy + y2)
= 2(x – y) – (x – y)2
= (x – y)[2 – (x – y)]
= (x – y)(2 – x + y)
c) x4 – 2x2 = x2(x2 – (√2)2) = x2(x - √2)(x + √2).
a) x3 + 2x2y + xy2– 9x = x(x2 +2xy + y2 – 9)
= x[(x2 + 2xy + y2) – 9]
= x[(x + y)2 – 32]
= x(x + y – 3)(x + y + 3)
b) 2x – 2y – x2 + 2xy – y2 = (2x – 2y) – (x2 – 2xy + y2)
= 2(x – y) – (x – y)2
= (x – y)[2 – (x – y)]
= (x – y)(2 – x + y)
c) x4 – 2x2 = x2(x2 – (√2)2) = x2(x - √2)(x + √2).
Câu 2 nha
\(a,x^4+2x^3+x^2\)
\(=x^2\left(x^2+2x+1\right)\)
\(=x^2\left(x+1\right)^2\)
\(c,x^2-x+3x^2y+3xy^2+y^3-y\)
\(=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\)
\(=\left(x+y\right)^3-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2+2xy+y^2-1\right)\)
\(x^3+8y^3+2xy^2+x^2y\)
\(=x^3+2x^2y-x^2y-2xy^2+4xy^2+8y^3\)
\(=x^2\left(x+2y\right)-xy\left(x+2y\right)+4y^2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x^2-xy+4y^2\right)\)
a) x3 – 2x2 + x = x(x2 – 2x + 1) = x(x – 1)2
b) 2x2 + 4x + 2 – 2y2 = 2[(x2 + 2x + 1) – y2]
= 2[(x + 1)2 – y2]
= 2(x + 1 – y)(x + 1 + y)
c) 2xy – x2 – y2 + 16 = 16 – (x2 – 2xy + y2) = 42 – (x – y)2
= (4 – x + y)(4 + x – y)
a)\(x^2-y^2-2x+2y=\left(x^2-2x+1\right)-\left(y^2-2y+1\right)\)
\(=\left(x-1\right)^2-\left(y-1\right)^2=\left(x-1+y-1\right)\left(x-1-y+1\right)\)
\(=\left(x+y-2\right)\left(x-y\right)\)
b)\(3a^2-6ab+3b^2-12c^2=3\left(a^2-2ab+b^2-4c^2\right)\)\(=3\left[\left(a-b\right)^2-\left(2c\right)^2\right]\)
\(=3\left(a-b+2c\right)\left(a-b-2c\right)\)
\(g,8x^3-27y^3=\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)\)
\(h,x^3+y^3+2x^2-2xy+2y^2\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)+2\left(x^2-xy+y^2\right)\)
\(=\left(x^2-xy+y^2\right)\left(x+y+2\right)\)
\(e,-5x+x^2-14\)
\(=x^2+2x-7x-14\)
\(=x\left(x+2\right)-7\left(x+2\right)\)
\(=\left(x+2\right)\left(x-7\right)\)
\(f,x^3+8+6x\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2+2x+4\right)+6x\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2+8x+4\right)\)
\(g,15x^2-7xy-2y^2\)
\(=15x^2+3xy-10xy-2y^2\)
\(=3\left(5x+y\right)-2y\left(5x+y\right)\)
\(=\left(5x+y\right)\left(3-2y\right)\)
\(h,3x^2-16x+5\)
\(=3x^2-x-15x+5\)
\(=x\left(3x-1\right)+5\left(3x-1\right)\)
\(=\left(3x-1\right)\left(x+5\right)\)
\(a,x^3+2x^2y+xy^2=x\left(x^2+2xy+y^2\right)\)
\(=x\left(x+y\right)^2\)
\(b,4x^2-9y^2+4x-6y\)
\(=4x^2+4x+1-\left(9y^2+6y+1\right)\)
\(=\left(2x+1\right)^2-\left(3y+1\right)^2\)
\(=\left(2x-3y\right)\left(2x+3y+2\right)\)
\(c,-x^2+5x+2xy-5y-y^2\)
\(=-\left(x^2-2xy+y^2\right)+5\left(x-y\right)\)
\(=-\left(x-y\right)^2+5\left(x-y\right)\)
\(=\left(x-y\right)\left(y-x+5\right)\)
\(d,x^2+4x-12\)
\(=x^2-2x+6x-12\)
\(=x\left(x-2\right)+6\left(x-2\right)\)
\(=\left(x-2\right)\left(x+6\right)\)
Bài giải:
a) x3 – 2x2 + x = x(x2 – 2x + 1) = x(x – 1)2
b) 2x2 + 4x + 2 – 2y2 = 2[(x2 + 2x + 1) – y2]
= 2[(x + 1)2 – y2]
= 2(x + 1 – y)(x + 1 + y)
c) 2xy – x2 – y2 + 16 = 16 – (x2 – 2xy + y2) = 42 – (x – y)2
= (4 – x + y)(4 + x – y)
a) \(x^3 - 2x^2 + x\) \(= x(x^2 - 2x + 1)\)
\(= x (x - 1 )^2\)
b) \(2x^2 + 4x + 2 - 2y^2\) \(= 2(x^2 + 2x + 1 - y^2)\)
\(=2\left[\left(x^2+2x+1\right)-y^2\right]\)
\(=2\left[\left(x+1^2\right)-y^2\right]\)
\(= 2 (x+1-y) (x+1+y)\)
c) \(2xy - x^2 - y^2 + 16\) \(= - (x^2 - 2xy + y^2 - 4^2)\)
\(= - [(x^2 - 2xy + y^2) - 4^2]\)
\(= - [(x-y)^2 - 4^2 ]\)
\(= - (x - y - 4) (x- y + 4)\)