Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(4x^2-12x+9\)
\(=\left(2x\right)^2-2.2.3+3^2\)
\(=\left(2x-3\right)^2\)
b) \(4x^2+4x+1\)
\(=\left(2x\right)^2+2.2x.1+1^2\)
\(=\left(2x+1\right)^2\)
c) \(1+12x+36x^2\)
\(=1^2+2.6x+\left(6x\right)^2\)
\(=\left(1+6x\right)^2\)
d) \(9x^2-24xy+16y^2\)
\(=\left(3x\right)^2-2.3x.4y+\left(4y\right)^2\)
\(=\left(3x-4y\right)^2\)
e) Viết = công thức trực quan hộ mình
f) \(-x^2+10x-25\)
\(=-\left(x^2-10x+25\right)\)
\(=-\left(x^2-2.5x+5^2\right)\)
\(=-\left(x-5\right)^2\)
a) \(4x^2-12x+9=\left(2x\right)^2-2.2x.3+3^2=\left(2x-3\right)^2\)
b) \(4x^2+4x+1=\left(2x\right)^2+2.2x.1+1^2=\left(2x+1\right)^2\)
c) \(1+12x+36x^2=1^2+2.6x.1+\left(6x\right)^2=\left(1+6x\right)^2\)
d) \(9x^2-24xy+16y^2=\left(3x\right)^2-2.3x.4y+\left(4y\right)^2=\left(3x-4y\right)^2\)
f) \(-x^2+10x-25=-\left(x^2-10x+25\right)=-\left(x-5\right)^2\)
g) \(-16a^4b^6-24a^5b^5-9a^6b^4=-\left(16a^4b^6+24a^5b^5+9a^6b^4\right)\)
\(=-\left[\left(4a^2b^3\right)^2+2.4a^2b^3.3a^3b^2+\left(3a^3b^2\right)^2\right]\)
\(=-\left(4a^2b^3+3a^3b^2\right)^2\)
h) \(25x^2-20xy+4y^2=\left(5x\right)^2-2.5x.2y+\left(2y\right)^2\) \(=\left(5x-2y\right)^2\)
i) \(25x^4-10x^2y+y^2=\left(5x^2\right)^2-2.5x^2.y+y^2=\left(5x^2-y\right)^2\)
toàn hằng đẳng thức (1) và (2) thôi mà bạn, đọc SGK 8 tập 1 là hiểu ngay. Có gì khó hiểu hỏi nhé!
a, x2-6x +9 = (x-3)2
b, 4x2+4x +1 = (2x)2+2.2x.1 +12=(2x+1)2
c, 9x2 -12x +4 = (3x-2)2
d, 25x2 -10x +1= (5x -1)2
e, x4-4x2+4 = (x2 -2)2
f, x2 +8x +16 = (x+4)2
a) \(4x^2-4xy+y^2-9\)
\(=\left(2x-y\right)^2-3^2\)
\(=\left(2x-y+3\right)\left(2x-y-3\right)\)
b) \(x^2-36+4xy+4y^2\)
\(=\left(4y^2+4xy+x^2\right)-36\)
\(=\left(2y+x\right)^2-6^2\)
\(=\left(2y+x+6\right)\left(2y+x-6\right)\)
c) \(9x^2-12xy-25+4y^2\)
\(=\left(9x^2-12xy+4y^2\right)-25\)
\(=\left(3x-2y\right)^2-5^2\)
\(=\left(3x-2y+5\right)\left(3x-2y-5\right)\)
d) \(25x^2+10x-4y^2+1\)
\(=\left(25x^2+10x+1\right)-4y^2\)
\(=\left(5x+1\right)^2-\left(2y\right)^2\)
\(=\left(5x+2y+1\right)\left(5x-2y+1\right)\)
a)x7+x5+1=x7+x6-x6+2x5-x5+x4-x4+x3-x3+x2-x2+1
=x7-x6+x5-x3+x2+x6-x5+x4-x2+x+x5-x4+x3-x+1
=x2(x5-x4+x3-x+1)+x(x5-x4+x3-x+1)+1(x5-x4+x3-x+1)
=(x2+x+1)(x5-x4+x3-x+1)
b)4x4-32x2+1=4x4+12x3+2x2-12x3-36x2-6x+2x2+6x+1
=2x2(2x2+6x+1)-6x(2x2+6x+1)+1(2x2+6x+1)
=(2x2-6x+1)(2x2+6x+1)
c)x6+27=(x2+3)(x2-3x+3)(x2+3x+3)
d)3(x4+x2+1)-(x2+x+1)
=3x4-3x3+2x2+3x3-3x2+2x+3x2-3x+2
=x2(3x2-3x+2)+x(3x2-3x+2)+1(3x2-3x+2)
=(x2+x+1)(3x2-3x+2)
e)bạn tự làm nhé
a, x6 - x4 + 2x3 + 2x
= x(x5- x3 + 2x2 + 2)
b, x2 + 2x + 1 - y2
= (x + 1)2 - y2
= (x + 1 + y)(x + 1 - y)
c, x2 + 2xy + y2 - 9z2
= (x + y)2 - 9z2
= (x + y + 3z)(x + y - 3z)s
d, x3 - 10x2 + 25x - 16xy2
= x(x2 - 10x + 25 - 16y2)
= x[(x - 5)2 - 16y2]
= x(x - 5 - 4y)(x - 5 + 4y)
e, 3xy2 - 2xy + 12x
= x(3y2 - 2y + 12)
a) \(4x^2-12x+9\)
\(=\left(2x\right)^2-2.2x.3+3^2\)
\(=\left(2x-3\right)^2\)
b) \(4x^2+4x+1\)
\(=\left(2x\right)^2+2.2x.1+1^2\)
\(=\left(2x+1\right)^2\)
c) \(1+12x+36x^2\)
\(=1^2+2.1.6x+\left(6x\right)^2\)
\(=\left(1+6x\right)^2\)
d) \(9x^2-24xy+16y^2\)
\(=\left(3x\right)^2-2.3x.4y+\left(4y\right)^2\)
\(=\left(3x-4y\right)^2\)
e) \(\frac{x^2}{4}+2xy+4y^2\)
\(=\left(\frac{x}{2}\right)^2+2.\frac{x}{2}.2y+\left(2y\right)^2\)
\(=\left(\frac{x}{2}+2y\right)^2\)
f) \(-x^2+10x-25\)
\(=-\left(x^2-10x+25\right)\)
\(=-\left(x^2-2.5x+5^2\right)\)
\(=-\left(x-5\right)^2\)
g) \(-16a^4b^6-24a^5b^5-9a^6b^4\)
\(=-a^4b^4\left(16b^2+24ab+9a^2\right)\)
\(=-a^4b^4\left[\left(4b\right)^2+2.4b.3a+\left(3a\right)^2\right]\)
\(=-a^4b^4\left(4b+3a\right)^2\)
h) \(25x^2-20xy+4y^2\)
\(=\left(5x\right)^2-2.5x.2y+\left(2y\right)^2\)
\(=\left(5x-2y\right)^2\)
i) \(25x^4-10x^2y+y^2\)
\(=\left(5x^2\right)^2-2.5x^2y+y^2\)
\(=\left(5x^2-y\right)^2\)