Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(4x^2-3x-18\right)^2-\left(4x^2+3x\right)^2\)
\(=\left(4x^2-3x-18-4x^2-3x\right)\left(4x^2-3x-18+4x^2+3x\right)\)
\(=\left(-6x-18\right)\left(8x^2-18\right)\)
b) \(9\left(x+y-1\right)^2-4\left(2x+3y+1\right)^2\)
\(=\left[3\left(x+y-1\right)\right]^2-\left[2\left(2x+3y+1\right)\right]^2\)
\(=\left(3x+3y-3\right)^2-\left(4x+6y+2\right)^2\)
\(=\left(3x+3y-3+4x+6y+2\right)\left(3x+3y-3-4x-6y-2\right)\)
\(=\left(7x+9y-1\right)\left(-x-3y-5\right)\)
c) \(-4x^2+12xy-9y^2+25\)
\(=-\left(2x\right)^2+2.2x.3y-\left(3y\right)^2+5^2\)
\(=-\left[\left(2x\right)^2-2.2x.3y+\left(3y\right)^2-5^2\right]\)
\(=-\left[\left(2x-3y\right)^2-5^2\right]\)
\(=-\left(2x-3y-5\right)\left(2x-3y+5\right)\)
d) \(x^2-2xy+y^2-4m^2+4mn-n^2\)
\(=\left(x^2-2xy+y^2\right)-4m\left(m-n\right)-n^2\)
\(=\left(x-y\right)^2-4m\left(m-n\right)-n^2\)
\(=\left(x-y-n\right)\left(x-y+n\right)-4m\left(m-n\right)\)
a) Ta có: \(x^2+4x+3\)
\(=x^2+x+3x+3\)
\(=x\left(x+1\right)+3\left(x+1\right)\)
\(=\left(x+1\right)\left(x+3\right)\)
b) Ta có: \(16x-5x^2-3\)
\(=-5x^2+16x-3\)
\(=-5x^2+15x+x-3\)
\(=-5x\left(x-3\right)+\left(x-3\right)\)
\(=\left(x-3\right)\left(-5x+1\right)\)
c) Ta có: \(2x^2+7x+5\)
\(=2x^2+2x+5x+5\)
\(=2x\left(x+1\right)+5\left(x+1\right)\)
\(=\left(x+1\right)\left(2x+5\right)\)
d) Ta có: \(2x^2+3x-5\)
\(=2x^2+5x-2x-5\)
\(=x\left(2x+5\right)-\left(2x+5\right)\)
\(=\left(2x+5\right)\left(x-1\right)\)
e) Ta có: \(x^3-3x^2+1-3x\)
\(=\left(x+1\right)\cdot\left(x^2-x+1\right)-3x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-x+1-3x\right)\)
\(=\left(x+1\right)\left(x^2-4x+1\right)\)
f) Ta có: \(x^2-4x-5\)
\(=x^2-4x+4-9\)
\(=\left(x-2\right)^2-3^2\)
\(=\left(x-2-3\right)\left(x-2+3\right)\)
\(=\left(x-5\right)\left(x+1\right)\)
g) Ta có: \(\left(a^2+1\right)^2-4a^2\)
\(=\left(a^2+1\right)^2-\left(2a\right)^2\)
\(=\left(a^2+1-2a\right)\left(a^2+1+2a\right)\)
\(=\left(a-1\right)^2\cdot\left(a+1\right)^2\)
h) Ta có: \(x^3-3x^2-4x+12\)
\(=x^2\left(x-3\right)-4\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2-4\right)\)
\(=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)
i) Ta có: \(x^4+x^3+x+1\)
\(=x^3\left(x+1\right)+\left(x+1\right)\)
\(=\left(x+1\right)\left(x^3+1\right)\)
\(=\left(x+1\right)^2\cdot\left(x^2-x+1\right)\)
k) Ta có: \(x^4-x^3-x^2+1\)
\(=x^3\left(x-1\right)-\left(x^2-1\right)\)
\(=x^3\left(x-1\right)-\left(x-1\right)\left(x+1\right)\)
\(=\left(x-1\right)\left(x^3-x-1\right)\)
l) Ta có: \(\left(2x+1\right)^2-\left(x-1\right)^2\)
\(=\left(2x+1-x+1\right)\left(2x+1+x-1\right)\)
\(=3x\left(x+2\right)\)
m) Ta có: \(x^4+4x^2-5\)
\(=x^4-x^2+5x^2-5\)
\(=x^2\left(x^2-1\right)+5\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x^2+5\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x^2+5\right)\)
a)\(\left(3x-1\right)^2-16=\left(3x-1-16\right)\left(3x-1+16\right)\)
\(=\left(3x-17\right)\left(3x+15\right)\)
c)\(\left(2x+5\right)^2-\left(x-9\right)^2=\left(2x+5+x-9\right)\left(2x+5-x+9\right)\)
\(=\left(x-4\right)\left(x+14\right)\)
Aps dungj t/c a2 - b2 = ( a-b)(a+b)
Sửa lại ạ!
a) \(\left(3x-1\right)^2-16\)
\(=\left(3x-1\right)^2-4^2\)
\(=\left(3x-1-4\right)\left(3x-1+4\right)\)
\(=\left(3x-5\right)\left(3x+3\right)\)
b) \(\left(5x-4\right)^2-49x^2\)
\(=\left(5x-4\right)^2-\left(7x\right)^2\)
\(=\left(5x-4-7x\right)\left(5x-4+7x\right)\)
\(=\left(-4-2x\right)\left(-4+12x\right)\)
c) \(\left(2x+5\right)^2-\left(x-9\right)^2\)
\(=\left(2x+5-x+9\right)\left(2x+5+x-9\right)\)
\(=\left(x+14\right)\left(3x-4\right)\)
d) \(\left(3x+1\right)^2-4\left(x-2\right)^2\)
\(=\left(3x+1\right)^2-\left[2\left(x-2\right)\right]^2\)
\(=\left(3x+1\right)^2-\left(2x-4\right)^2\)
\(=\left(3x+1-2x+4\right)\left(3x+1+2x-4\right)\)
\(=\left(x+5\right)\left(5x-3\right)\)
e) \(9\left(2x+3\right)^2-4\left(x+1\right)^2\)
\(=\left[3\left(2x+3\right)\right]^2-\left[2\left(x+1\right)\right]^2\)
\(=\left(6x+9\right)^2-\left(2x+2\right)^2\)
\(=\left(6x+9-2x-2\right)\left(6x+9+2x+2\right)\)
\(=\left(4x+7\right)\left(8x+11\right)\)
P/s: Ko chắc!
a, -x - y2 + x2 - y = (x2 - y2) - (x + y)
= (x - y)(x + y) - (x + y)
= (x + y)(x - y - 1)
b, x( x + y ) - 5x - 5y = x(x + y) - 5(x + y)
= (x - 5)(x + y)
c, x2 - 5x + 5y - y2 = (x - y)(x + y) - 5(x - y)
= (x - y)(x + y - 5)
d, 5x3 - 5x2y - 10x2 + 10xy = 5x2(x - y) - 10x(x - y)
= 5x(x - y)(x - 2)
e, 27x3 - 8y3 = (3x - 2y)(9x2 + 6xy + 4y2)
f, x2 - y2 - x - y = (x - y)(x + y) - (x + y)
= (x + y)(x - y - 1)
g, x2 - y2 - 2xy + y2 = (x2 - 2xy + y2) - y2
= (x - y)2 - y2
= (x - y - y)(x - y + y) = x(x - 2y)
h, x2 - y2 + 4 - 4x = (x2 - 4x + 4) - y2
= (x - 2)2 - y2
= (x - y - 2)(x + y - 2)
i, x3 + 3x2 + 3x + 1 - 27z3 = (x + 1)3 - 27z3
= (x+1-3z)(x2+2x+1+3xz+3z+9z2)
k, 4x2 + 4x - 9y2 + 1 = (2x + 1)2 - 9y2
= (2x - 3y + 1)(2x + 3y + 1)
m, x2 - 3x + xy - 3y = x(x - 3) + y(x - 3)
= (x - 3)(x + y)
a) Ta có: \(\left(3x-1\right)^2-16\)
\(=\left(3x-1-4\right)\left(3x-1+4\right)\)
\(=\left(3x-5\right)\left(3x+3\right)\)
\(=3\left(x+1\right)\left(3x-5\right)\)
b) Ta có: \(\left(5x-4\right)^2-49x^2\)
\(=\left(5x-4-7x\right)\left(5x-4+7x\right)\)
\(=\left(-2x-4\right)\left(12x-4\right)\)
\(=-2\left(x+2\right)\cdot4\cdot\left(3x-1\right)\)
\(=-8\left(x+2\right)\left(3x-1\right)\)
c) Ta có: \(\left(2x+5\right)^2-\left(x-9\right)^2\)
\(=\left(2x+5-x+9\right)\left(2x+5+x-9\right)\)
\(=\left(x+14\right)\left(3x-4\right)\)
d) Ta có: \(\left(3x+1\right)^2-4\left(x-2\right)^2\)
\(=\left(3x+1\right)^2-\left(2x-4\right)^2\)
\(=\left(3x+1-2x+4\right)\left(3x+1+2x-4\right)\)
\(=\left(x+5\right)\left(5x-3\right)\)
e) Ta có: \(9\left(2x+3\right)^2-4\left(x+1\right)^2\)
\(=\left(6x+9\right)^2-\left(2x+2\right)^2\)
\(=\left(6x+9-2x-2\right)\left(6x+9+2x+2\right)\)
\(=\left(4x+7\right)\left(8x+11\right)\)
f) Ta có: \(4b^2c^2-\left(b^2+c^2-a^2\right)^2\)
\(=\left(2bc-b^2-c^2+a^2\right)\left(2bc+b^2+c^2-a^2\right)\)
\(=-\left(b^2-2bc+c^2-a^2\right)\left[\left(b^2+2bc+c^2\right)-a^2\right]\)
\(=-\left[\left(b-c\right)^2-a^2\right]\cdot\left[\left(b+c\right)^2-a^2\right]\)
\(=-\left(b-c-a\right)\left(b-c+a\right)\left(b+c-a\right)\left(b+c+a\right)\)
g) Ta có: \(\left(ax+by\right)^2-\left(ay+bx\right)^2\)
\(=\left(ax+by-ay-bx\right)\left(ax+by+ay+bx\right)\)
\(=\left[a\left(x-y\right)+b\left(y-x\right)\right]\left[a\left(x+y\right)+b\left(x+y\right)\right]\)
\(=\left[a\left(x-y\right)-b\left(x-y\right)\right]\left(x+y\right)\left(a+b\right)\)
\(=\left(x-y\right)\left(a-b\right)\left(x+y\right)\left(a+b\right)\)
h) Ta có: \(\left(a^2+b^2-5\right)^2-4\left(ab+2\right)^2\)
\(=\left(a^2+b^2-5\right)^2-\left(2ab+4\right)^2\)
\(=\left(a^2+b^2-5+2ab+4\right)\left(a^2+b^2-5-2ab-4\right)\)
\(=\left[\left(a^2+2ab+b^2\right)-1\right]\left[\left(a^2-2ab+b^2\right)-9\right]\)
\(=\left(a+b-1\right)\left(a+b+1\right)\left(a-b-3\right)\left(a-b+3\right)\)
i) Ta có: \(\left(4x^2-3x-18\right)^2-\left(4x^2+3x\right)^2\)
\(=\left(4x^2-3x-18-4x^2-3x\right)\left(4x^2-3x-18+4x^2+3x\right)\)
\(=\left(-6x-18\right)\left(8x^2-18\right)\)
\(=-6\left(x+3\right)\cdot2\left(x^2-9\right)\)
\(=-12\left(x+3\right)^2\cdot\left(x-3\right)\)
k) Ta có: \(9\left(x+y-1\right)^2-4\left(2x+3y+1\right)^2\)
\(=\left(3x+3y-3\right)^2-\left(4x+6y+2\right)^2\)
\(=\left(3x+3y-3-4x-6y-2\right)\left(3x+3y-3+4x+6y+2\right)\)
\(=\left(-x-3y-5\right)\left(7x+9y-1\right)\)
l) Ta có: \(-4x^2+12xy-9y^2+25\)
\(=-\left(4x^2-12xy+9y^2-25\right)\)
\(=-\left[\left(2x-3y\right)^2-5^2\right]\)
\(=-\left(2x-3y-5\right)\left(2x-3y+5\right)\)
m) Ta có: \(x^2-2xy+y^2-4m^2+4mn-n^2\)
\(=\left(x-y\right)^2-\left(4m^2-4mn+n^2\right)\)
\(=\left(x-y\right)^2-\left(2m-n\right)^2\)
\(=\left(x-y-2m+n\right)\left(x-y+2m-n\right)\)