Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để phân thức \(A=\frac{x^2+5x+4}{x^2+x-12}\) không xác định thì \(x^2+x-12=0\)
\(\Rightarrow x^2+2.\frac{1}{2}x+\frac{1}{4}-12,25=0\)
\(\left(x+\frac{1}{2}\right)^2=12,25\)
\(\Rightarrow\orbr{\begin{cases}x+\frac{1}{2}=\frac{7}{2}\\x+\frac{1}{2}=-\frac{7}{2}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=3\\x=-4\end{cases}}\)
Vậy \(\orbr{\begin{cases}x=3\\x=-4\end{cases}.}\)
A không xác định khi mẫu bằng 0=>\(x^2+x-12=0\Leftrightarrow x^2+4x-3x-12=0\Leftrightarrow x\left(x+4\right)-3\left(x+4\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x-3\right)=0\Leftrightarrow\orbr{\begin{cases}x=-4\\x=3\end{cases}}\)
1, \(x^2\left(x-3\right)-4x+12=x^2\left(x-3\right)-4\left(x-3\right)\)
\(=\left(x-2\right)\left(x+2\right)\left(x-3\right)\)
2, \(2a\left(x+y\right)-x-y=2a\left(x+y\right)-\left(x+y\right)=\left(2a-1\right)\left(x+y\right)\)
3, \(2x-4+5x^2-10x=2\left(x-2\right)+5x\left(x-2\right)=\left(2+5x\right)\left(x-2\right)\)
4, sửa đề :
\(6x^2-12x-7x+14=6x\left(x-2\right)-7\left(x-2\right)=\left(6x-7\right)\left(x-2\right)\)
5, \(xy-y^2-3x+3y=y\left(x-y\right)-3\left(x-y\right)=\left(y-3\right)\left(x-y\right)\)
a) x2(x-3)-4x+12
=x2(x-3)-4(x-3)
=(x-3)(x2-4)
=(x-3)(x-2)(x+2)
b) 2a(x+y)-x-y
=2a(x+y)-(x+y)
=(x+y)(2a-1)
c) 2x-4+5x2-10x
=2(x-2)+5x(x-2)
=(x-2)(2+5x)
d) 5x2-12x-7x+14
=5x2-19x+14
e) xy-y2-3x+3y
=y(x-y)-3(x-y)
=(x-y)(y-3)
#H
\(x^8+x^7+1\)
\(=x^8+x^7+x^6-x^6+x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2+x-xx+1\)
\(=\left(x^8-x^6+x^5-x^3+x^2\right)\)
\(+\left(x^7-x^5+x^4-x^2+x\right)\)
\(+\left(x^6-x^4+x^3-x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)
6x3 - 7x2 + 5x - 2
= 6x3 - 4x2 - 3x2 + 2x + 3x - 2
= 6x2(x - 2/3) - 3x(x - 2/3) + 3(x - 2/3)
= (x - 2/3)(6x2 - 3x + 3)
= 3(x - 2/3)(2x2 - x + 1)
4x3 + 5x2 + 10x - 12
= 4x3 - 3x2 + 8x2 - 6x + 16x - 12
= 4x2(x - 3/4) + 8x(x - 3/4) + 16(x - 3/4)
= (x - 3/4)(4x2 + 8x + 16)
= 4(x - 3/4)(x2 + 2x + 4)
4x3 - 7x2 - x + 3
= 4x3 - 3x2 - 4x2 + 3x - 4x + 3
= 4x2(x - 3/4) - 4x(x - 3/4) - 4(x - 3/4)
= (x - 3/4)(4x2 - 4x - 4)
= 4(x - 3/4)(x2 - x - 1)
4x3 - 5x2 + 6x + 9
= 4x3 + 3x2 - 8x2 - 6x + 12x + 9
= 4x2(x + 3/4) - 8x(x + 3/4) + 12(x + 3/4)
= (x + 3/4)(4x2 - 8x + 12)
= 4(x + 3/4)(x2 - 2x + 3)
3x3 - 5x2 + 5x - 2
= 3x3 - 2x2 - 3x2 + 2x + 3x - 2
= 3x2(x - 2/3) - 3x(x - 2/3) + 3(x - 2/3)
= (x - 2/3)(3x2 - 3x + 3)
= 3(x - 2/3)(x2 - x + 1)
Để phân thức \(A=\frac{x^2+5x+4}{x^2+x-12}\) không xác định thì \(x^2+x-12=0\)
\(\Rightarrow x^2+2.\frac{1}{2}x+\frac{1}{4}-12,25=0\)
\(\left(x+\frac{1}{2}\right)^2=12,25\)
\(\Rightarrow\left[\begin{array}{nghiempt}x+\frac{1}{2}=\frac{7}{2}\\x+\frac{1}{2}=-\frac{7}{2}\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=3\\x=-4\end{array}\right.\)
Vậy \(\left[\begin{array}{nghiempt}x=3\\x=-4\end{array}\right.\)
P/T được xác định khi:
(5x-12+4x)-(14-x)\(\ne\)0
<=> 10x-26 \(\ne\)0
<=> x \(\ne\)2.6