Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(x+2\right)\left(x^2-2x+4\right)-\left(x^3-2\right)\)
\(\Rightarrow A=\left(x^3+8\right)-\left(x^3-2\right)\)
\(\Rightarrow A=x^3+8-x^3+2\)
\(\Rightarrow A=\left(x^3-x^3\right)+\left(8+2\right)\)
\(\Rightarrow A=10\)
\(A=\left(x+2\right)\left(x^2-2x+4\right)-\left(x^3-2\right)\)
\(=x^3+8-x^3+2\)
\(=10\)
\(B=\left(x+2\right)\left(x-2\right)\left(x^2+2x+4\right)\left(x^2-2x+4\right)\)
\(=\left(x+2\right)\left(x^2-2x+4\right)\left(x-2\right)\left(x^2+2x+4\right)\)
\(=\left(x^3+8\right)\left(x^3-8\right)\)
\(=x^6-64\)
\(C=\left(x^2+3x+1\right)^2+\left(3x-1\right)^2-2\left(x^2+3x+1\right)\left(3x-1\right)\)
\(=\left(x^2+3x+1\right)^2-2\left(x^2+3x+1\right)\left(3x-1\right)+\left(3x-1\right)^2\)
\(=\left(x^2+3x+1-3x+1\right)^2\)
\(=\left(x^2+2\right)^2\)
\(D=\left(3x^3+3x+1\right)\left(3x^3-3x+1\right)-\left(3x^3+1\right)^2\)
\(=\left(3x^3+1+3x\right)\left(3x^3+1-3x\right)-\left(3x^3+1\right)^2\)
\(=\left(3x^3+1\right)^2-9x^2-\left(3x^3+1\right)^2\)
\(=-9x^2\)
\(E=\left(2x^2+2x+1\right)\left(2x^2-2x+1\right)-\left(2x^2+1\right)^2\)
\(=\left(2x^2+1+2x\right)\left(2x^2+1-2x\right)-\left(2x^2+1\right)^2\)
\(=\left(2x^2+1\right)^2-4x^2-\left(2x^2+1\right)^2\)
\(=-4x^2\)
\(x^2-2x-4y^2-4y\)
\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)
\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y-2\right)\)
\begin{array}{l} a){\left( {ab - 1} \right)^2} + {\left( {a + b} \right)^2}\\ = {a^2}{b^2} - 2ab + 1 + {a^2} + 2ab + {b^2}\\ = {a^2}{b^2} + 1 + {a^2} + {b^2}\\ = {a^2}\left( {{b^2} + 1} \right) + \left( {{b^2} + 1} \right)\\ = \left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)\\ c){x^3} - 4{x^2} + 12x - 27\\ = {x^3} - 27 + \left( { - 4{x^2} + 12x} \right)\\ = \left( {x - 3} \right)\left( {{x^2} + 3x + 9} \right) - 4x\left( {x - 3} \right)\\ = \left( {x - 3} \right)\left( {{x^2} + 3x + 9 - 4x} \right)\\ = \left( {x - 3} \right)\left( {{x^2} - x + 9} \right)\\ b){x^3} + 2{x^2} + 2x + 1\\ = {x^3} + 2{x^2} + x + x + 1\\ = x\left( {{x^2} + 2x + 1} \right) + \left( {x + 1} \right)\\ = x{\left( {x + 1} \right)^2} + \left( {x + 1} \right)\\ = \left( {x + 1} \right)\left( {x\left( {x + 1} \right) + 1} \right)\\ = \left( {x + 1} \right)\left( {{x^2} + x + 1} \right)\\ d){x^4} - 2{x^3} + 2x - 1\\ = {x^4} - 2{x^3} + {x^2} - {x^2} + 2x - 1\\ = {x^2}\left( {{x^2} - 2x + 1} \right) - \left( {{x^2} - 2x + 1} \right)\\ = \left( {{x^2} - 2x + 1} \right)\left( {{x^2} - 1} \right)\\ = {\left( {x - 1} \right)^2}\left( {x - 1} \right)\left( {x + 1} \right)\\ = {\left( {x - 1} \right)^3}\left( {x + 1} \right)\\ e){x^4} + 2{x^3} + 2{x^2} + 2x + 1\\ = {x^4} + 2{x^3} + {x^2} + {x^2} + 2x + 1\\ = {x^2}\left( {{x^2} + 2x + 1} \right) + \left( {{x^2} + 2x + 1} \right)\\ = \left( {{x^2} + 2x + 1} \right)\left( {{x^2} + 1} \right)\\ = {\left( {x + 1} \right)^2}\left( {{x^2} + 1} \right) \end{array} |
1. \(x^3+2x^2+2x+1\)
\(=\left(x^3+1\right)+\left(2x^2+2x\right)\)
\(=\left(x+1\right)\left(x^2+x+1\right)+2x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+3x+1\right)\)
2. \(x^3-4x^2+12x-27\)
\(=x^3-3x^2-x^2+3x+9x-27\)
\(=x^2\left(x-3\right)-x\left(x-3\right)+9\left(x-3\right)\)
\(=\left(x^2-x+9\right)\left(x-3\right)\)
3. \(x^4-2x^3+2x-1\)
\(=\left(x^4-1\right)-2x\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x^2-2x+1\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x-1\right)^2\)
\(=\left(x-1\right)^3\left(x+1\right)\)
d) \(x^4+2x^3+2x^2+2x+1\)
\(=x^4+x^2+2x^3+2x+x^2+1\)
\(=x^2\left(x^2+1\right)+2x\left(x^2+1\right)+\left(x^2+1\right)\)
\(=\left(x^2+2x+1\right)\left(x^2+1\right)\)
\(=\left(x+1\right)^2\left(x^2+1\right)\)
1. x3 + 2x2 + 2x + 1
= x3 + x2 + x2 + x + x + 1
= x2(x + 1) + x(x + 1) + (x + 1)
= (x + 1)(x2 + x + 1)
2. x3 - 4x2 + 12x - 27
= x3 - 3x2 - x2 + 3x + 9x - 27
= x2(x - 3) - x(x - 3) + 9(x - 3)
= (x - 3)(x2 - x + 9)
3. x4 - 2x3 + 2x - 1
= x4 - x3 - x3 + x2 - x2 + x + x - 1
= x3(x - 1) - x2(x - 1) - x(x - 1) + (x - 1)
= (x - 1)(x3 - x2 - x + 1)
= (x - 1)[x(x2 - 1) - (x2 - 1)]
= (x - 1)(x2 - 1)(x - 1)
= (x - 1)2(x - 1)(x + 1)
= (x - 1)3(x + 1)
4. x4 + 2x3 + 2x2 + 2x + 1
= x4 + x3 + x3 + x2 + x2 + x + x + 1
= x3(x + 1) + x2(x + 1) + x(x + 1) + (x + 1)
= (x + 1)(x3 + x2 + x + 1)
= (x + 1)[x(x2 + 1) + (x2 + 1)]
= (x + 1)(x + 1)(x2 + 1)
= (x + 1)2(x2 + 1)
1) 4x\(^2\).(5x3+2x-1)
= 20x\(^5\)+8x\(^3\)-4x\(^2\).
2) 4x\(^3\): x2
= 4x
3) ( 15x2y3-10x3y3+6xy): 5xy
= 3xy2-2x2y2+\(\dfrac{6}{5}\)
4) (5x3+14x2+12x+8 ): (x+2)
= 5x2+4x+4
5)\(\dfrac{7}{2x}\)+\(\dfrac{11}{3y^2}\)
=\(\dfrac{7.3y^2+11.2x}{6xy^2}\) =\(\dfrac{21y^2+22x}{6xy^2}\) = \(\dfrac{21+22}{6}\) =\(\dfrac{43}{6}\)
6) \(\dfrac{x}{x+2}\) +\(\dfrac{3}{\left(x+2\right)\left(4x-7\right)}\)
7)\(\dfrac{3}{x-y}\)-\(\dfrac{2x^2}{x+y}\)
= \(\dfrac{3\left(x+y\right)-2\left(x+y\right)}{\left(x-y\right)\left(x+y\right)}\)=\(\dfrac{3x+3y-2x-2y}{\left(x-y\right)\left(x+y\right)}\)=\(\dfrac{x+y}{\left(x-y\right)\left(x+y\right)}\)=\(\dfrac{1}{x-y}\).
8)\(\dfrac{1}{2}\)x2y2.(2x+y)(2x-y)
= \(\dfrac{1}{2}\)x2y2.(4x2-2xy+2xy-y2)
= \(\dfrac{1}{2}\)x2y2.(4x2-y2)
= 2x4y2-\(\dfrac{1}{2}\)x2y4
9) (x-\(\dfrac{1}{2}\)).(x+\(\dfrac{1}{2}\)).(4x-1)
= x2.(4x-1)
= 4x3-x2
10)\(\dfrac{3x}{2x+6}\)+\(\dfrac{6-x}{2x^2+6x}\)
= \(\dfrac{3x}{2\left(x+3\right)}\)+\(\dfrac{6-x}{2x\left(x+3\right)}\)= \(\dfrac{3x^2+6-x}{2x\left(x+3\right)}\)=\(\dfrac{3-x}{3}\)= -x
11) x2-\(\dfrac{1}{2x-2}\)+3x+\(\dfrac{3}{1-x^2}\)
12)\(\dfrac{x^2}{x^2-y^2}\)-\(\dfrac{x-y}{x^2-y^2}\)
= \(\dfrac{x^2-xy}{\left(x-y\right)\left(x+y\right)}\)=\(\dfrac{x\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}\)= \(\dfrac{x}{x+y}\)
1,\(2x\left(x-5\right)-\left(x-2\right)^2-\left(x+3\right)\left(x-3\right)\)
\(=2x^2-10x-x^2+4x-4-x^2+9\)
\(=\left(2x^2-x^2-x^2\right)+\left(-10x+4x\right)+\left(-4+9\right)\)
\(=-6x+5\)
2,\(\left(x+1\right)^2-3\left(x-5\right)\left(x+5\right)-\left(2x-1\right)^2\)
\(=x^2+2x+1-3\left(x^2-25\right)-\left(4x^2-4x+1\right)\)
\(=x^2+2x+1-3x^2+75-4x^2+4x-1\)
\(=-6x^2+6x+75\)
3,\(\left(x-1\right)^3-\left(x-3\right)\left(x^2+3x+9\right)\)
\(=\left(x-1\right)^3-\left(x^3-27\right)\)
\(=x^3-3x^2+3x-1-x^3+27\)
\(=-3x^2+3x+26\)
4,\(\left(x+5\right)\left(x^2-5x+25\right)-\left(x+2\right)^3\)
\(=\left(x^3+125\right)-\left(x^3+6x^2+12x+8\right)\)
\(=x^3+125-x^3-6x^2-12x-8\)
\(=-6x^2-12x+117\)
5,\(2x\left(x-7\right)-\left(x+3\right)\left(x-2\right)^2+\left(x+1\right)^2\)
\(=2x^2-14x-\left(x+3\right)\left(x^2-4x+4\right)+x^2+2x+1\)
=\(2x^2-14x-x^3+4x^2-4x-3x^2+12x-12+x^2+2x+1\)
\(=-x^3+4x^2-4x+1\)
6,\(\left(2x+5\right)\left(x-3\right)-\left(x+5\right)\left(x-1\right)-\left(x-4\right)^2\)
\(=2x^2-6x+5x-15-x^2+x-5x+5-x^2+8x-16\)
\(=3x-26\)
7,\(\left(x+5\right)\left(x-5\right)\left(x+2\right)-\left(x+2\right)^3\)
=\(\left(x^2-25\right)\left(x+2\right)-x^3-6x^2-12x-8\)
\(=x^3+2x^2-25x-50-x^3-6x^2-12x-8\)
\(=-4x^2-27x-58\)
Nếu đúng thì tick cho mk nha ^_^
\(x^3+2x^2+x\)
\(=x^3+x^2+x^2+x\)
\(=x^2\left(x+1\right)+x\left(x+1\right)\)
\(=\left(x^2+x\right)\left(x+1\right)\)
\(2x^3-3x^2-2x+3\)
\(=2x\left(x^2-1\right)-3\left(x^2-1\right)\)
\(=\left(2x-3\right)\left(x^2-1\right)\)