K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2017

Điều kiện để (P): \(y=ax^2+bx+c\) cắt trục hoành tại hai điểm phân biệt là \(\Delta>0\).
Gọi \(x_1;x_2\) là hoành độ của hai giao điểm. Ta có:
\(x_{1,2}=\dfrac{-b\pm\sqrt{\Delta}}{2a}\);
Tọa độ giao điểm là:
\(A\left(\dfrac{-b+\sqrt{\Delta}}{2a};0\right)\); \(A\left(\dfrac{-b-\sqrt{\Delta}}{2a};0\right)\).

27 tháng 10 2018

Câu 1: (P) : \(y=ax^2+bx+c\)

Vì (P) cắt trục Ox tại hai điểm có hoành độ lần lượt là -1 và 2

nên (P) cắt hai điểm A(-1;0) và B (2;0)

A (-1;0) ∈ (P) ⇔ 0 = a - b+c (1)

B (2;0) ∈ (P) ⇔ 0 = 4a+2b+c (2)

Mà (P) cắt trục Oy tại điểm có tung độ bằng -2

nên (P) cắt C ( 0;-2)

C (0;-2) ∈ (P) ⇔ -2 = c (3)

Từ (1) ,(2) và (3) ⇔ \(\left\{{}\begin{matrix}a-b+c=0\\4a+2b+c=0\\c=-2\end{matrix}\right.\)

\(\left\{{}\begin{matrix}a-b=2\\4a+2b=2\end{matrix}\right.\)

\(\left\{{}\begin{matrix}a=1\\b=-1\end{matrix}\right.\)

Vậy (P) : \(y=x^2-x-2\)

Câu 2: (P) : \(y=ax^2+bx+c\)

Vì (P) có đỉnh I ( -2;-1)

\(\left\{{}\begin{matrix}\dfrac{-b}{2a}=-2\\-1=4a-2b+c\end{matrix}\right.\)

\(\left\{{}\begin{matrix}-4a+b=0\\4a-2b+c=-1\end{matrix}\right.\)(1)

Mà (P) cắt trục tung tại điểm có tung độ bằng -3

nên (P) cắt A( 0;-3)

A(0;-3) ∈ (P) ⇔ -3 = c (2)

Từ (1) và (2) ⇔ \(\left\{{}\begin{matrix}-4a+b=0\\4a-2b+c=-1\\c=-3\end{matrix}\right.\)

\(\left\{{}\begin{matrix}-4a+b=0\\4a-2b=2\end{matrix}\right.\)

\(\left\{{}\begin{matrix}a=\dfrac{-1}{2}\\b=-2\end{matrix}\right.\)

Vậy (P) : \(y=\dfrac{-1}{2}x^2-2x-3\)

4 tháng 11 2021

Thay \(x=0;y=3\Leftrightarrow c=3\Leftrightarrow\left(P\right):y=ax^2-x+3\)

Vì (P) có trục đx là \(\dfrac{1}{2}\Leftrightarrow-\dfrac{\left(-1\right)}{a}=\dfrac{1}{2}\Leftrightarrow a=2\)

Vậy \(\left(P\right):y=2x^2-x+3\)

 

4 tháng 11 2021

DẠ CẢM ƠN NHIỀU Ạ !!!

15 tháng 11 2018

Vì (P) có trục đối xứng x = 1 => \(-\dfrac{b}{2a}=1\left(1\right)\)

Vì (P) đi qua A(2; 3) => với x = 2 thì y = 3 => 4a + 2b + c = 3 (2)

Vì (P0 cắt trục tung tại điểm có tung độ bằng 3 => Với x = 0 thì y = 3 => c = 3 (3)

Từ (1), (2), (3) ta có:

\(\left\{{}\begin{matrix}-\dfrac{b}{2a}=1\\4a+2b+c=3\\c=3\end{matrix}\right.\) => ...

=> xem lại đề @@

15 tháng 11 2018

thank tao thấy vô lý lên mới đi hỏi

14 tháng 5 2017

Lời giải

a)

a.1) Trục đối xứng y =1/4

a.2) giao trục tung A(0,-2)

a.3) giao trục hoành (\(\left(\Delta=17\right)\) \(B\left(\dfrac{1-\sqrt{17}}{4};0\right)\);\(C\left(\dfrac{1+\sqrt{17}}{4}\right)\)

b)

b.1) Trục đối xứng y =-1/4

b.2) giao trục tung A(0,2)

a.3) giao trục hoành \(\left(\Delta=17\right)\) \(B\left(\dfrac{-1-\sqrt{17}}{4};0\right)\);\(C\left(\dfrac{-1+\sqrt{17}}{4}\right)\)

5 tháng 6 2019

Đáp án D

b: Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}x^2-4x+1=2x-4\\y=2x-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2-6x+5=0\\y=2x-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(x-5\right)=0\\y=2x-4\end{matrix}\right.\)

\(\Leftrightarrow\left(x,y\right)\in\left\{\left(1;-2\right);\left(5;6\right)\right\}\)

c: Điểm M,N ở đâu vậy bạn?

NV
3 tháng 10 2019

Do (P) cắt trục tung tại điểm có tung độ bằng 3 \(\Rightarrow c=3\)

\(\Rightarrow y=ax^2+bx+3\)

Mặt khác từ tọa độ đỉnh parabol ta có: \(\left\{{}\begin{matrix}-\frac{b}{2a}=-2\\-\frac{b^2-4ac}{4a}=-1\end{matrix}\right.\)\(a\ne0\)

\(\Rightarrow\left\{{}\begin{matrix}b=4a\\b^2-12a=4a\end{matrix}\right.\)

Thay b từ trên xuống: \(16a^2-16a=0\)

\(\Rightarrow16a\left(a-1\right)=0\Rightarrow a=1\Rightarrow b=4\)

Vậy pt (P): \(y=x^2+4x+3\)