K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2019

\(x^2=\left(\sqrt{\frac{2}{3}}\right)^2=\frac{2}{3}\)

\(y^2=\left(\sqrt{\frac{6}{25}}\right)^2=\frac{6}{25}\)

\(\sqrt{xy}=\sqrt{\frac{2}{3}.\frac{6}{25}}=\sqrt{\frac{4}{25}}=\frac{2}{5}\)

=> \(P=3.\frac{2}{3}-5.\frac{2}{5}+25.\frac{6}{25}=2-2+6=6\)

\(P=3\cdot\dfrac{2}{3}-5\cdot\sqrt{\dfrac{2}{5}}+25\cdot\dfrac{6}{25}=2+6-\sqrt{10}=8-\sqrt{10}\)

26 tháng 10 2016

Thay \(x=\sqrt{\frac{2}{3}};y=\sqrt{\frac{6}{25}}\) vào biểu thức P ta được:

\(P=3\left(\sqrt{\frac{2}{3}}\right)^2-5\sqrt{\sqrt{\frac{2}{3}}.\sqrt{\frac{6}{25}}}+25\left(\sqrt{\frac{6}{25}}\right)^2\)

\(P=3.\frac{2}{3}-\sqrt{25.\sqrt{\frac{2}{3}}.\sqrt{\frac{6}{25}}}+25.\frac{6}{25}\)

\(P=2-\sqrt{\sqrt{25^2}.\sqrt{\frac{2}{3}}.\sqrt{\frac{6}{25}}}+6\)

\(P=8-\sqrt{\sqrt{25^2.\frac{2}{3}.\frac{6}{25}}}\)

\(P=8-\sqrt{\sqrt{100}}\)

\(P=8-\sqrt{10}\)

 

27 tháng 10 2016

Bài này cũng dễ

Chỉ cần thay vào là dc mừ

Sao lại vào câu hỏi hay

6 tháng 3 2020

1. A = 75(42004 + 42003 +...+ 4+ 4 + 1) + 25

    A = 25 . [3 . (42004 + 42003 +...+ 4+ 4 + 1) + 1]

    A = 25 . (3 . 42004 + 3 . 42003 +...+ 3 . 4+ 3 . 4 + 3 + 1)

    A = 25 . (3 . 42004 + 3 . 42003 +...+ 3 . 4+ 3 . 4 + 4)

    A = 25 . 4 . (3 . 42003 + 3 . 42002 +...+ 3 . 4 + 3 + 1)

    A =100 . (3 . 42003 + 3 . 42002 +...+ 3 . 4 + 3 + 1) \(⋮\) 100

6 tháng 3 2020

3a) |x| = 1/2 

=> x = 1/2 hoặc x = -1/2

với x = 1/2:

A = \(3.\left(\frac{1}{2}\right)^2-2.\frac{1}{2}+1\)

\(A=\frac{3}{4}-1+1=\frac{3}{4}\)

với x = -1/2

A = \(3.\left(-\frac{1}{2}\right)^2-2\left(-\frac{1}{2}\right)+1\)

\(A=\frac{3}{4}+1+1=\frac{3}{4}+2=\frac{11}{4}\)

10 tháng 12 2017

1,

Ta có; \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}}\)

\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}\)

........

\(\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\)

Cộng các vế ta được:

\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}=\frac{100}{\sqrt{100}}=10\) (đpcm)

2,Câu hỏi của Nguyễn Như Quỳnh - Toán lớp 7 | Học trực tuyến

3, 

3n+2-2n+2+3n-2n

= 3n.32-2n.22+3n-2n

= 3n(9 + 1) - 2n(4 + 1)

= 3n.10 - 2n.5

= 3n.10 - 2n-1.10

= 10(3n - 2n-1) chia hết cho 10

14 tháng 4 2019

Thay x = \(\frac{1}{2}\), y = \(\frac{-1}{3}\)vào biểu thức A

Ta được: \(A=3.\left(\frac{1}{2}\right)^3.\left(\frac{-1}{3}\right)+6.\left(\frac{1}{2}\right)^2.\left(-\frac{1}{3}\right)^2+3.\frac{1}{2}.\left(\frac{-1}{3}\right)^2\)

\(=\frac{3.1.\left(-1\right)}{8.3}+\frac{6.1.1}{4.9}+\frac{3.1.1}{2.9}\)

\(=\frac{-1}{8}+\frac{1}{6}+\frac{1}{6}=\frac{5}{24}\)

Thay x = -1, y = 3 vào biểu thức B

Ta được:

B = (-1)2. 32 + (-1) . 3 +(-1)3 +33

   = 9 + (-3) + (-1) + 27  

   = 32

14 tháng 4 2019

\(A=3x^2y+6x^2y^2+3xy^2\)

\(A=3\left(\frac{1}{2}\right)^3\left(-\frac{1}{3}\right)+6\left(\frac{1}{2}\right)^2\left(-\frac{1}{3}\right)^2+3\left(\frac{1}{2}\right)\left(-\frac{1}{3}\right)^2\)

\(A=\left(-\frac{1}{8}\right)+\frac{1}{6}+\frac{1}{6}\)

\(A=\frac{5}{24}\)

Vậy: Biểu thức A tại x = 1/2; y = -1/3 là: 5/24

\(B=x^2y^2+xy+x^3+y^3\)

\(B=\left(-1\right)^2.3^2+\left(-1\right).3+\left(-1\right)^3+3^3\)

\(B=9+\left(-3\right)+26\)

\(B=32\)

Vậy: biểu thức B tại x = -1; y = 3 là: 32

6 tháng 11 2016

a) Có \(A=\frac{\sqrt{x}+2}{\sqrt{x}-2}=\frac{\sqrt{x}-2+4}{\sqrt{x}-2}=\frac{\sqrt{x}-2}{\sqrt{x}-2}+\frac{4}{\sqrt{x}-2}=1+\frac{4}{\sqrt{x}-2}\)

Để A đạt giá trị nguyên thì: \(\sqrt{x}-2\in U\left(4\right)\)

TH1: \(\sqrt{x}-2=1\Rightarrow x=9\)

TH2: \(\sqrt{x}-2=-1\Rightarrow x=1\)

TH3: \(\sqrt{x}-2=2\Rightarrow x=16\)

TH4: \(\sqrt{x}-2=-2\Rightarrow x=0\)

TH5: \(\sqrt{x}-2=4\Rightarrow x=36\)

TH6: \(\sqrt{x}-2=-4\Rightarrow\) k tồn tại x

Vậy:...