K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2017

a. P(x) = 4x3 + 2x2 +7-x2 -x = 4x3+x2-x+7

Q(x) = -4x3+x-(-14) -2x-x2-1 = -4x3+x+14-2x-x2-1 = -4x3 -x2 -x+13

25 tháng 4 2018

a,P(x)=4x\(^3\)+2x\(^2\)-2x+7-x\(^2\)-x

=4x\(^3\)+(2x\(^2\)-x\(^2\))+(-2x-x)+7

=4x\(^3\)+x\(^2\)-3x+7

Q(x)=-4x\(^3\)+x-14-2x-x\(^2\)-1

=-4x\(^3\)-x\(^2\)+(x-2x)+(-14-1)

= -4x\(^3\)-x\(^2\) -x -15

b, P(x)+Q(x)=4x\(^3\)+x\(^2\)-3x+7-4x\(^3\)-x\(^2\) -x -15

=\(\left(4x^3-4x^3\right)\)+\(\left(x^2-x^2\right)\)+(-3x-x)+(7-15)

= -4x-8

P(x)-Q(x)=(4x\(^3\)+x\(^2\)-3x+7)-(-4x\(^3\)-x\(^2\) -x -15)

=4x\(^3\)+x\(^2\)-3x+7+4x\(^3\)+x\(^2\) +x +15

=\(\left(4x^3+4x^3\right)\)+\(\left(x^2+x^2\right)\)+(-3x+x)+(7+15)

= \(8x^3\) + \(2x^2\) - 2x + 22

12 tháng 5 2020
https://i.imgur.com/9L99WWw.jpg
13 tháng 5 2020

Nhưng tại sao bạn không giải thích câu c) vậy?
Đúng là có đúng nhưng mình muốn lời giải chính xác và đầy đủ hơn
Tuy nhiên, cảm ơn bạn đã trả lời câu hỏi của mình
eoeo

8 tháng 6 2020

thiếu ở Q(x) = x^3 kìa

8 tháng 4 2018

a, P(x)=\(3x^3+2x^2-2x+7-x^2-x\)

=\(3x^3+\left(2x^2-x^2\right)+\left(-2x-x\right)+7\)

=\(3x^3+x^2-3x+7\)

Q(x)=\(-3x^3+x-14-2x-x^2-1\)

= -3x\(^3\)+\((x-2x)\)+(-14-1)-x\(^2\)

= -3x\(^3\)-x -15 -x\(^2\)

b, M(x)=P(x)+Q(x)=\((3x^3+x^2-3x+7)\)+ (-3x\(^3\)-x-15-x\(^2\))

=\(3x^3+x^2-3x+7\) -3x\(^3\) -x -15 -x\(^2\)

=(3x\(^3\)- 3x\(^3\)) + (x\(^2\)-x\(^2\)) + (-3x-x) + (7-15)

= -4x - 8

24 tháng 4 2022

a, P(x)=3x3+2x2−2x+7−x2−x3x3+2x2−2x+7−x2−x

=3x3+(2x2−x2)+(−2x−x)+73x3+(2x2−x2)+(−2x−x)+7

=3x3+x2−3x+73x3+x2−3x+7

Q(x)=−3x3+x−14−2x−x2−1−3x3+x−14−2x−x2−1

= -3x33+(x−2x)(x−2x)+(-14-1)-x22

= -3x33-x -15 -x22

b, M(x)=P(x)+Q(x)=(3x3+x2−3x+7)(3x3+x2−3x+7)+ (-3x33-x-15-x22)

=3x3+x2−3x+73x3+x2−3x+7 -3x33 -x -15 -x22

=(3x3- 3x3) + (x2-x2) + (-3x-x) + (7-15)

= -4x - 8

11 tháng 4 2016

miumiu

28 tháng 7 2019

a) P(x) = 2x3 - 2x + x2 - x3 + 3x + 2

P(x) = (2x3 - x3) + x2 + (-2x + 3x) + 2

P(x) = x3 + x2 + x + 2

Q(x) = 4x3 - 5x2 + 3x - 4x - 3x3 + 4x2 + 1

Q(x) = (4x3 - 3x3) + (-5x2 + 4x2) + (3x - 4x) + 1

Q(x) = x3 + x2 - x + 1

b) P(x) + Q(x) = (2x3 - 2x + x2 - x3 + 3x + 2) + (4x3 - 5x2 + 3x - 4x - 3x3 + 4x2 + 1)

                       =  2x3 - 2x + x2 - x3 + 3x + 2 + 4x3 - 5x2 + 3x - 4x - 3x3 + 4x2 + 1

                       = (2x3 - x3 + 4x3 - 3x3) + (-2x + 3x + 3x - 4x) + (x2 - 5x2 + 4x2) + (2 + 1)

                       = 2x3 + 3

P(x) - Q(x) = (2x3 - 2x + x2 - x3 + 3x + 2) - (4x3 - 5x2 + 3x - 4x - 3x3 + 4x2 + 1)

                  = 2x3 - 2x + x2 - x3 + 3x + 2 + 4x3 + 5x2 - 3x + 4x + 3x3 - 4x2 - 1

                  = (2x3 - x3 + 4x3 + 3x2) + (-2x + 3x - 3x + 4x) + (x2 + 5x2 - 4x2) + (2 - 1)

                  = 8x2 + 2x + 2x2 + 1

c) P(-1) = 2.(-1)3 - 2.(-1) + (-1)- (-1)3 + 3.(-1) + 2

             = -2 - (-2) + 1 - (-1) - 3 + 2

             = 1

Q(2) = 2.23 - 2.2 + 22 - 23 + 3.2 + 2

        = 16 - 4 + 4 - 8 + 6 + 2

        = 16

20 tháng 6 2020

Đáp án:

Giải thích các bước giải:

 a) P(x) = 2x³ - 3x + x⁵ - 4x³ + 4x - x⁵ + x² - 2

            = -2x³ + x² + x - 2

Q(x) = x³ - 2x² + 3x + 1 + 2x²

        = x³ + 3x + 1

Sắp xếp theo thứ tự giảm dần của biến là:

P(x) = -2x³ + x² + x - 2

Q(x) = x³ + 3x + 1

b) P(x) + Q(x) = -2x³ + x² + x - 2 + x³ + 3x + 1 

                      = -x³ + x² + 4x - 1

P(x) - Q(x) = -2x³ + x² + x - 2 - x³ - 3x - 1 

                 = -4x³ + x² - 2x - 3 

20 tháng 6 2020

a) P(x) = 2x3 - 2x - x2 - x3 + 3x + 2

=> P(x) = (2x3 - x3) + (-2x + 3x) - x2 + 2

=> P(x) = x3 + x - x2 + 2

Sắp xếp : P(x) = x3 - x2 + x + 2

Q(x) = -4x3 + 5x2 - 3x + 4x + 3x3 - 4x2 + 1

=> Q(x) = (-4x3 + 3x3) + (5x2 - 4x2) + (-3x + 4x) + 1

=> Q(x) = -x3 + x2 + x + 1

Sắp xếp : Q(x) = -x3 + x2 + x + 1

b) H(x) = P(x) + Q(x)

=> H(x) = (x3 + x - x2 + 2) + (-x3 + x2 + x + 1)

=> H(x) = x3 + x - x2 + 2 - x3 + x2 +x + 1

=> H(x) = (x3 - x3) + (x + x) + (-x2 + x2) + (2 + 1)

=> H(x) = 2x + 3

K(x) = P(x) - Q(x)

=> K(x) = (x3 + x - x2 + 2) - (-x3 + x2 + x + 1)

=> K(x) = x3 + x - x2 + 2 + x3 - x2 - x - 1

=> K(x) = (x3 + x3) + (x - x) + (-x2 - x2) + (2 - 1)

=> K(x) = 2x3 - 2x2 + 1

c) Q(2) = -23 + 22 + 2 + 1 = -8 + 4 + 2 + 1 = -1( m k bt (-2)3 hay -23 nx nên thông cảm))

P(-1) = (-1)3 - (-1)2 + (-1) + 2 = -1 - 1 - 1 + 2 = -1

d) Để H(x) có nghiệm => 2x + 3 = 0 => 2x = -3 => \(x=-\frac{3}{2}\)

Vậy x = -3/2 là nghiệm của đa thức H(x)

P/s : K chắc :))

20 tháng 6 2020

a) Mình làm tắt

P(x) = x3 - x2 + x + 2

Q(x) = -x3 + x2 + x + 1

b) H(x) = P(x) + Q(x) 

            =  x3 - x2 + x + 2 - x3 + x2 + x + 1

            = 2x + 3

K(x) = P(x) - Q(x)

        = x3 - x2 + x + 2 - ( -x3 + x2 + x + 1 )

        = x3 - x2 + x + 2 + x3 - x2 - x - 1

        = 2x3 - 2x2 + 1

c) Q(2) = -(2)3 + 22 + 2 + 1 = -8 + 4 + 2 + 1 = -1

P(-1) =  13 - 12 + 1 + 2 = 1 - 1 + 1 + 2 = 3

d) H(x) = 2x + 3

H(x) = 0 <=> 2x + 3 = 0

              <=> 2x = -3

              <=> = -3/2

Vậy nghiệm của H(x) = -3/2

17 tháng 4 2019

a,P(x) = 5x3-x2-3x+7

Q(x)=-3x3 -x2-x-1

b, M(x)= P(x)+Q(x)= 5x3-x2-3x+7+-3x3 -x2-x-1=2x3-2x2-4x+6

\N(x)=P(x)-Q(x)= 5x3-x2-3x+7-(-3x3 -x2-x-1)= 8X3-2x+8

c,P(x)=-Q(x)

5x3-x2-3x+7=-(-3x3 -x2-x-1)

2x3-2x2-4x+6=0

đề có vẻ hơi sai sai mếu k thì nghiệm là căn thức phức tạp ??

17 tháng 4 2019

cô mình còn bắt tìm cả x cơ bạn ạ