K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2016

n chẵn => n = 2k (k N)

n3 + 6n2 + 8n = (2k)3 + 6.(2k)2 + 8.(2k) = 8k3 + 24.k2 + 16k = 8k. (k2 + 3k + 2) = 8k.(k2 + 2k + k + 2)

= 8k. [k(k +2) + (k+2)] = 8k.(k+1).(k+2)

Nhận xét: k; k+1; k+ 2 là 3 số tự nhiên liên tiếp nên tích của chúng chia hết cho 6

=> 8k.(k+1).(k+2) chia hết cho 8.6 = 48

=> n3 + 6n2 + 8n chia hết cho 48

15 tháng 12 2016

\(A=n^3+6n^2+8n\\ =n\left(n^2+6n+8\right)\\ =n\left(n+2\right)\left(n+4\right)\)

n chẵn => n + 2; n + 4 chẵn => A là tích của 3 số chẵn liên tiếp => A chia hết cho 48 (đpcm)

1 tháng 7 2017

Tra trước khi hỏi nhá!

Câu hỏi của yen hai

Chúc bạn học tốt!!!

2 tháng 7 2017

Cảm ơn bạn!

18 tháng 10 2015

vào câu hỏi tương tự nha

20 tháng 8 2016

n3 + 6n2 + 8n = n(n+2)(n+4) (1)

Vì n chẵn nên n = 2k

(1) = 8k(k+1)(k+2)

Ta thấy  k(k+1)(k+2) là ba số tự nhiên liên tiếp nên chia hết cho 6 vậy n3 + 6n2 + 8n chia hết cho 6×8 = 48

25 tháng 3 2018

\(n^3+6n^2+8n=n\left(n^2+6n+8\right)=n\left[n^2\left(n+6\right)+8\right]\)\(=n\left[n\left(n+4+2\right)+8\right]=n\left[n\left(n+4\right)+2n+8\right]\)\(=n\left[n\left(n+4\right)+2\left(n+4\right)\right]=n\left(n+2\right)\left(n+4\right)\)(1)

Vì n là số chẵn nên n=2k(k thuộc n)(2)

Thế (2) vào (1),ta có:

\(2k\left(2k+2\right)\left(2k+4\right)=8k\left(k+1\right)\left(k+2\right)\)

Vì k(k+1)(k+2) là tích 3 số tự nhiên liên tiếp nên biểu thức trên chia hết cho 6 và vì biểu thức trên có nhân tử là 8 nên nó chia hết cho 8 và sẽ chia hết cho 48

31 tháng 1 2017

a,n3+6n2+8n=n3+2n2+4n2+8n=n2(n+2)+4n(n+2)=(n+2)(n2+4n)=n(n+2)(n+4)

dễ thấy đây là tích 2 số chẵn liên tiếp ,trong 3 số chẵn liên tiếp luôn có 1 số chia hết cho 4 

=>n(n+2)(n+4) chia hết cho 16

n chẵn nên n chia 3 dư 1 hoặc n chia 3 dư 2

+n chia 3 dư 1 => n+2 chia hết cho 3

+n chia 3 dư 2 =>n+4 chia hết cho 3

=> n(n+2)(n+3) chia hết cho 3

Tóm lại n3+6n2+8n chia heêtt1 cho 3.16=48

31 tháng 1 2017

hình như mk làm chưa logic lắm,để làm lại:

Vì n chẵn =>n=2k

n3+6n2+8n=(2k)3+6(2k)2+8.2k=8k3+24k2+16k=8k(k2+3k+2)=8k(k+1)(k+2)

Vì k,k+1,k+2 là 3 SN liên tiếp nên tích của chúng chia hết cho 2 và 3 ,mà (2;3)=1 =>tích của chúng cũng chia hết cho 6

=>8k(k+1)(k+2) chia hết cho 8.6=48

31 tháng 1 2017

a)\(n^3+6n^2+8n=n\left(n+2\right)\left(n+4\right)\)

đầu tiên bạn chứng minh nó chia hết cho 16, rồi chia hết cho 3, gộp lại thành ra chia hết cho 48, mình ngại ghi lắm :v

b)\(a\left(a+2\right)+b\left(b-2\right)-2ab=63\)

<=>\(a^2+2a+b^2-2b-2ab=63\)

<=>\(\left(a^2-2ab+b^2\right)+\left(2a-2b\right)=63\)

<=>\(\left(a-b\right)^2+2\left(a-b\right)=63\)

<=>\(\left(a-b\right)\left(a-b+2\right)=63=7.9\)

<=> a - b = 7

13 tháng 8 2018

\(n^3 + 6n^2+8n\)

\(= n^3 + 2n^2 + 4n^2 + 8n\)

\(= n^2(n+2) + 4n(n+2)\)

\(= (n+2)(n^2+4n) = n(n+2)(n+4)\)

Khi n chẵn thì n = 2k

\(=> n(n+2)(n+4) = 2k.2(k+1).2.(k+2)\)

\(= 8.k(k+1)(k+2) = 8.B(6) = B(48)\)

Vậy .........................

13 tháng 8 2018

n^3 + 6n^2+8n

= n^3 + 2n^2 + 4n^2 + 8n

= n^2(n+2) + 4n(n+2)

= (n+2)(n^2+4n) = n(n+2)(n+4)

Khi n chẵn thì n = 2k

=> n(n+2)(n+4) = 2k.2(k+1).2.(k+2)

= 8.k(k+1)(k+2) = 8.B(6) = B(48)

Vậy .........................

3 tháng 11 2016

Ta có:

\(n^5-5n^3+4n=n\left(n^4-5n^2+4\right)\)

\(=n\left(n^4-n^2-4n^2+4\right)\)

\(=n\left[n^2\left(n^2-1\right)-4\left(n^2-1\right)\right]\)

\(=n\left(n^2-1\right)\left(n^2-4\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)\)

\(\Rightarrow\)\(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)

\(n-2;n-1;;n;n+1;n+2\) là tích của 5 số nguyên liên tiếp chia hết cho 3;5;8

Mà ƯC\(_{\left(3;5;8\right)}\)=1

\(\Rightarrow\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\) chia hết cho:

3.5.8=120(đpcm)