Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A= 1/2010+1+2/2009+1+3/2008+1+...+2009/2+1+1
= 2011/2010+20011/2009+2011/2008+...+2011/2+2011/2011
= 2011(1/2+1/3+1/4+...+1/2011)
Ta có: B= 1/2+1/3+1/4+...+1/2011
suy ra A/B= 2011
Xét N :
N = \(\frac{1}{2.2}\)+\(\frac{1}{3.3}\)+\(\frac{1}{4.4}\)+...+\(\frac{1}{2009.2009}\)+\(\frac{1}{2010.2010}\)
Ta có :
\(\frac{1}{2.2}\)< \(\frac{1}{1.2}\)
\(\frac{1}{3.3}\)< \(\frac{1}{2.3}\)
...
\(\frac{1}{2009.2009}\)<\(\frac{1}{2008.2009}\)
\(\frac{1}{2010.2010}\)<\(\frac{1}{2019.2010}\)
Cộng vế theo vế của các bất đẳng thức trên , ta có :
\(\frac{1}{2.2}\)+\(\frac{1}{3.3}\)+\(\frac{1}{4.4}\)+...+\(\frac{1}{2009.2009}\)+\(\frac{1}{2010.2010}\) < \(\frac{1}{1.2}\)+\(\frac{1}{2.3}\)+...+\(\frac{1}{2008.2009}\)+\(\frac{1}{2019.2010}\)
=> N < 1 - \(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+...+\(\frac{1}{2009}\)-\(\frac{1}{2010}\)
=> N < 1 - \(\frac{1}{2010}\)<1
=> N < 1
Ta có: \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2010^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2009.2010}\)
\(<1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2009}-\frac{1}{2010}\)
\(<1-\frac{1}{2010}\)
\(<\frac{2009}{2010}<1\)
=>N<1
Bạn giải cũng được đấy alibaba nguyễn, nhưng theo mình thì làm cách này dễ hiểu hơn!
Ta có: \(C=\frac{\frac{2010}{1}+\frac{2009}{2}+\frac{2008}{3}+...+\frac{1}{2010}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}}\)
Đặt \(A=\frac{2010}{1}+\frac{2009}{2}+\frac{2008}{3}+...+\frac{1}{2010}\)
\(A=\frac{2010}{1}+1+\frac{2009}{1}+1+\frac{2008}{1}+1+...+\frac{1}{2010}+1-2010\)
\(=\frac{2011}{1}+\frac{2011}{2}+\frac{2011}{3}+...+\frac{2011}{2010}-\frac{2011.2010}{2011}\)
\(=2011\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2010}-\frac{2010}{2011}\right)\)
Đặt \(B=\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}\)
\(B=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}-1\)
\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2010}-\frac{2010}{2011}\)
Ta có: \(C=\frac{A}{B}=2011\)(lấy A-B)
Ta có :
\(2010A=\dfrac{2010^{2012}+2010}{2010^{2012}+1}=\dfrac{2010^{2012}+1+2009}{2010^{2012}+1}=1+\dfrac{2009}{2010^{2012}+1}\)
\(2010B=\dfrac{2010^{2011}+2010}{2010^{2011}+1}=\dfrac{2010^{2011}+1+2009}{2010^{2011}+1}=1+\dfrac{2009}{2010^{2011}+1}\)
Vì \(1+\dfrac{2009}{2010^{2012}+1}< 1+\dfrac{2009}{2010^{2011}+1}\Rightarrow A< B\)
~ Học tốt ~
a) Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}\) ; \(\frac{1}{3^2}< \frac{1}{2.3}\) ; \(\frac{1}{4^2}< \frac{1}{3.4}\) ; ... ; \(\frac{1}{2010^2}< \frac{1}{2009.2010}\)
=> \(Vt< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}\)
\(=1-\frac{1}{2010}< 1\)
\(a)\) Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2010^2}\) ta có :
\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}\)
\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}\)
\(A< 1-\frac{1}{2010}=\frac{2009}{2010}< 1\)
\(\Rightarrow\)\(A< 1\) ( đpcm )
Vậy \(A< 1\)
Chúc bạn học tốt ~
Ta có: A=\(\frac{1}{2011}+\frac{2}{2010}+\frac{3}{2009}+...+\frac{2009}{3}+\frac{2010}{2}+\frac{2011}{1}\)
=> A=\(\frac{2012-2011}{2011}+\frac{2012-2010}{2010}+...+\frac{2012-2}{2}+\frac{2012-1}{1}\)
=>A=\(\frac{2012}{2011}-1+\frac{2012}{2010}-1+...+\frac{2012}{2}-1+2012-1\)
=>A=\(2012\cdot\left(\frac{1}{2011}+\frac{1}{2010}+...+\frac{1}{2}\right)+1\)
=> A= \(2012\cdot\left(\frac{1}{2012}+\frac{1}{2011}+...+\frac{1}{2}\right)\)
ko biết có đúng hay ko nựa sai thì bỏ qua nha ^^
Ta có
1/2^2<1/1.2
1/3^2<1/2.3
......
1/2009^2<1/2008.2009
1/2010^2<1/2009.2010
=>1/2^2+1/3^2+...+1/2010^2<1/1.2+1/2.3+....+1/2009.2010
=>N<1/1.2+1/2.3+....+1/2009.2010
=>N<1-1/2010
=>N<2009/2010<1
Vậy N<1
\(N=\) \(\frac{1}{2^2}\) \(+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2009^2}+\frac{1}{2010^2}\)\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2008.2009}+\frac{1}{2009.2010}\)
\(N< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2008}-\frac{1}{2009}+\frac{1}{2009}-\frac{1}{2010}\)
\(N< 1-\frac{1}{2010}\)
\(N< \frac{2009}{2010}< 1\)
\(\Rightarrow N< 1\)