K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2017

Các bạn giải hộ mk 5 bài này nhanh lên nhé. Mình cảm ơn các bạn trước nhahihi

19 tháng 7 2017

Các bạn giúp mk vs ạ

2 tháng 9 2020

Bài 1.

a) x( 8x - 2 ) - 8x2 + 12 = 0

<=> 8x2 - 2x - 8x2 + 12 = 0 

<=> 12 - 2x = 0

<=> 2x = 12

<=> x = 6

b) x( 4x - 5 ) - ( 2x + 1 )2 = 0

<=> 4x2 - 5x - ( 4x2 + 4x + 1 ) = 0

<=> 4x2 - 5x - 4x2 - 4x - 1 = 0

<=> -9x - 1 = 0

<=> -9x = 1

<=> x = -1/9

c) ( 5 - 2x )( 2x + 7 ) = ( 2x - 5 )( 2x + 5 )

<=> -4x2 - 4x + 35 = 4x2 - 25

<=> -4x2 - 4x + 35 - 4x2 + 25 = 0

<=> -8x2 - 4x + 60 = 0

<=> -8x2 + 20x - 24x + 60 = 0

<=> -4x( 2x - 5 ) - 12( 2x - 5 ) = 0

<=> ( 2x - 5 )( -4x - 12 ) = 0

<=> \(\orbr{\begin{cases}2x-5=0\\-4x-12=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-3\end{cases}}\)

d) 64x2 - 49 = 0

<=> ( 8x )2 - 72 = 0

<=> ( 8x - 7 )( 8x + 7 ) = 0

<=> \(\orbr{\begin{cases}8x-7=0\\8x+7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{8}\\x=-\frac{7}{8}\end{cases}}\)

e) ( x2 + 6x + 9 )( x2 + 8x + 7 ) = 0

<=> ( x + 3 )2( x2 + x + 7x + 7 ) = 0

<=> ( x + 3 )[ x( x + 1 ) + 7( x + 1 ) ] = 0

<=> ( x + 3 )2( x + 1 )( x + 7 ) = 0

<=> x = -3 hoặc x = -1 hoặc x = -7

g) ( x2 + 1 )( x2 - 8x + 7 ) = 0

Vì x2 + 1 ≥ 1 > 0 với mọi x

=> x2 - 8x + 7 = 0

=> x2 - x - 7x + 7 = 0

=> x( x - 1 ) - 7( x - 1 ) = 0

=> ( x - 1 )( x - 7 ) = 0

=> \(\orbr{\begin{cases}x-1=0\\x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=7\end{cases}}\)

Bài 2.

a) ( x - 1 )2 - ( x - 2 )( x + 2 )

= x2 - 2x + 1 - ( x2 - 4 )

= x2 - 2x + 1 - x2 + 4

= -2x + 5

b) ( 3x + 5 )2 + ( 26x + 10 )( 2 - 3x ) + ( 2 - 3x )2

= 9x2 + 30x + 25 - 78x2 + 22x + 20 + 9x2 - 12x + 4

= ( 9x2 - 78x2 + 9x2 ) + ( 30x + 22x - 12x ) + ( 25 + 20 + 4 )

= -60x2 + 40x2 + 49

d) ( x + y )2 - ( x + y - 2 )2

= [ x + y - ( x + y - 2 ) ][ x + y + ( x + y - 2 ) ]

= ( x + y - x - y + 2 )( x + y + x + y - 2 )

= 2( 2x + 2y - 2 )

= 4x + 4y - 4

Bài 3.

 A = 3x2 + 18x + 33

= 3( x2 + 6x + 9 ) + 6 

= 3( x + 3 )2 + 6 ≥ 6 ∀ x

Đẳng thức xảy ra <=> x + 3 = 0 => x = -3

=> MinA = 6 <=> x = -3

B = x2 - 6x + 10 + y2

= ( x2 - 6x + 9 ) + y2 + 1

= ( x - 3 )2 + y2 + 1 ≥ 1 ∀ x,y

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-3=0\\y^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=0\end{cases}}\)

=> MinB = 1 <=> x = 3 ; y = 0

C = ( 2x - 1 )2 + ( x + 2 )2

= 4x2 - 4x + 1 + x2 + 4x + 4

= 5x2 + 5 ≥ 5 ∀ x

Đẳng thức xảy ra <=> 5x2 = 0 => x = 0

=> MinC = 5 <=> x = 0

D = -2/7x2 - 8x + 7 ( sửa thành tìm Max )

Để D đạt GTLN => 7x2 - 8x + 7 đạt GTNN

7x2 - 8x + 7 

= 7( x2 - 8/7x + 16/49 ) + 33/7

= 7( x - 4/7 )2 + 33/7 ≥ 33/7 ∀ x

Đẳng thức xảy ra <=> x - 4/7 = 0 => x = 4/7

=> MaxC = \(\frac{-2}{\frac{33}{7}}=-\frac{14}{33}\)<=> x = 4/7

9 tháng 8 2015

\(a\text{) }pt\Leftrightarrow\left(y^2+2y+1\right)+\left[\left(2^x\right)^2-2.2^x+1\right]=0\)

\(\Leftrightarrow\left(y+1\right)^2+\left(2^x-1\right)^2=0\)

\(\Leftrightarrow y+1=0\text{ và }2^x-1=0\)

\(\Leftrightarrow y=-1\text{ và }x=0\)

\(b\text{) }pt\Leftrightarrow\left(4x^2+4y^2+8xy\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)

\(\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

\(\Leftrightarrow x+y=0\text{ và }x-1=0\text{ và }y+1=0\)

\(\Leftrightarrow x=1\text{ và }y=-1\)

19 tháng 8 2018

a,\(3x\left(x-1\right)+x-1=0\)

\(\Rightarrow3x\left(x-1\right)+\left(x-1\right)=0\)

\(\Rightarrow\left(3x+1\right).\left(x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}3x+1=0\\x-1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=1\end{matrix}\right.\)

c,\(\left(2x-1\right)^2-25=0\)

\(\Rightarrow\left(2x-1\right)^2=25\)

\(\Rightarrow\left(2x-1\right)^2=5^2\)

\(\Rightarrow2x-1=\pm5\)

\(\Rightarrow\left[{}\begin{matrix}2x-1=5\\2x-1=-5\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=6\\2x=-4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

2 tháng 9 2020

Bài 1 : \(\left(y+a\right)^3=y^3+3y^2a+3ya^2+a^3\)

Bài 2:

1. \(x^2-2x+1=\left(x-1\right)^2\)

2. \(x^2+2x+1=\left(x+1\right)^2\)

3. \(x^2-6x+9=\left(x-3\right)^2\)

4. \(x^2-10x+25=\left(x-5\right)^2\)

5. \(x^2+14x+49=\left(x+7\right)^2\)

6. \(x^2-22x+121=\left(x-11\right)^2\)

7. \(4x^2-4x+1=\left(2x-1\right)^2\)

8. \(x^2-4x+4=\left(x-2\right)^2\)

9. \(x^2-2xy+y^2=\left(x-y\right)^2\)

10. \(4x^2-4xy+y^2=\left(2x-y\right)^2\)

2 tháng 9 2020

Bài 1 : 

\(\left(y+a\right)^3=y^3+3y^2a+3ya^2+a^3\)

Bài 2 : mk lm tiếp phần còn lại thôi, mấy câu mk ko lm có ở bài trc rồi 

\(x^2+14x+49=\left(x+7\right)^2\)

\(x^2-22x+121=\left(x-11\right)^2\)

\(4x^2-4x+1=\left(2x-1\right)^2\)

\(x^2-4x+4=\left(x-2\right)^2\)

\(x^2-2xy+y^2=\left(x-y\right)^2\)

\(4x^2-4xy+y^2=\left(2x-y\right)^2\)

29 tháng 9 2018

làm cái này dài lắm nên mk sẽ làm riêng từng bài nha! 
\(1,a,\left(2x-3\right)^2-4\left(x+1\right)\left(x-1\right)=4x^2-12x+9-4\left(x^2-1\right)\)

                                                                            \(=4x^2-12x+9-4x^2+4\)

                                                                              \(=-12x+13\)

  \(b,x\left(x^2-2\right)-\left(x-1\right)\left(x^2+x+1\right)=x^3-2x-\left(x^3-1\right)\)

                                                                                 \(=-2x+1\)

29 tháng 9 2018

1, rút gọn :

(2x-3)2-4(x+1)(x-1)

=(2x-3)-4(x2-1)

28 tháng 9 2018

\(x^2-2x=24\)

<=>  \(x^2-2x-24=0\)

<=>  \( \left(x+4\right)\left(x-6\right)=0\)

<=> \(\orbr{\begin{cases}x=-4\\x=6\end{cases}}\)

Vậy....

1 tháng 9 2019

\(a,\left(x+2\right)^2-x^2+4=0\)

\(\Leftrightarrow\left(x+2\right)^2+4-x^2=0\)

\(\Leftrightarrow\left(2+x\right)^2+\left(2-x\right)\left(2+x\right)=0\)

\(\Leftrightarrow\left(2+x\right)\left(2+x+2-x\right)=0\)

\(\Leftrightarrow4\left(2+x\right)=0\)

\(\Leftrightarrow2+x=0\)

\(\Leftrightarrow x=-2\)

\(c,\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\)

\(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5\left(x^2-49\right)=0\)

\(\Leftrightarrow5x^2+2x+10-5x^2+245=0\)

\(\Leftrightarrow2x+255=0\)

\(\Leftrightarrow x=-127,5\)