K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2020

Từ đề bài ta suy ra trong 30 người có đúng 15 cặp hiệp sĩ – kẻ lừa dối là bạn của nhau. Ta có thể dễ dàng đoán được đáp số của bài toán bằng cách “giả định” 15 người ở vị trí lẻ đều là hiệp sĩ. Khi đó, dĩ nhiên bạn của họ đều ngồi cạnh ở các vị trí chẵn và đều là kẻ lừa dối, do đó không có ai nói “Đúng”. Đáp số là 0.

Tuy nhiên, đó chỉ là dự đoán đáp số chứ không phải lời giải. Với cách hỏi ở đề bài, ta biết đáp số là 0. Nhưng để khẳng định điều này, ta phải chứng minh chứ không chỉ là đưa ra một ví dụ như vậy.

Nếu chúng ta sa đà vào việc xét vị trí ngồi của 30 người (ai là hiệp sĩ, ai là kẻ nối dối) thì sẽ rất rối vì có nhiều trường hợp xảy ra. Bí quyết của lời giải là ở nhận xét quan trọng sau: Trong 2 người là bạn của nhau, chỉ có đúng 1 người nói “Đúng” cho câu hỏi "Có phải bạn của anh đang ngồi cạnh anh không?".

Thật vậy, nếu có hai người, 1 hiệp sĩ, 1 kẻ lừa dối là bạn của nhau. Xét 2 trường hợp: 

1) Nếu họ ngồi cạnh nhau thì hiệp sĩ sẽ nói đúng, còn kẻ lừa dối nói “Không”. 

2) Nếu họ không ngồi cạnh nhau thì hiệp sĩ nói “Không”, còn kẻ lừa dối nói “Đúng”. 

Như vậy, vì ta có 15 cặp bạn nên ta có đúng 15 câu trả lời “Đúng”. Vì cả 15 người ở vị trí lẻ đã nói “Đúng” nên tất cả những người ở vị trí chẵn đều nói “Không”. Tức là đáp số bằng 0.

Từ đề bài ta suy ra trong 30 người có đúng 15 cặp Hiệp sĩ – Kẻ lừa dối là bạn của nhau. Ta có thể dễ dàng đoán được đáp số của bài toán bằng cách “giả định” 15 người ở vị trí lẻ đều là Hiệp sĩ. Khi đó, dĩ nhiên bạn của họ đều ngồi cạnh họ ở các vị trí chẵn và đều là Kẻ lừa dối, do đó không có ai nói “Đúng”. Đáp số là 0.

Tuy nhiên, đó chỉ là dự đoán đáp số chứ không phải lời giải. Với cách hỏi ở đề bài, ta biết đáp số là 0. Nhưng để khẳng định điều này, ta phải chứng minh chứ không chỉ là đưa ra một ví dụ như vậy.

Nếu chúng ta sa đà vào việc xét vị trí ngồi của 30 người (ai là hiệp sĩ, ai là kẻ nối dối) thì sẽ rất rối vì có nhiều trường hợp xảy ra. Bí quyết của lời giải là ở nhận xét quan trọng sau: Trong 2 người là bạn của nhau, chỉ có đúng 1 người nói “Đúng” cho câu hỏi "Có phải bạn của anh đang ngồi cạnh anh không?".

Thật vậy, nếu có hai người, 1 hiệp sĩ, 1 kẻ lừa dối là bạn của nhau. Xét 2 trường hợp: 

1) Nếu họ ngồi cạnh nhau thì Hiệp sĩ sẽ nói đúng, còn Kẻ lừa dối nói “Không”. 

2) Nếu họ không ngồi cạnh nhau thì Hiệp sĩ nói “Không”, còn Kẻ lừa dối nói “Đúng”. 

Như vậy, vì ta có 15 cặp bạn nên ta có đúng 15 câu trả lời “Đúng”. Vì cả 15 người ở vị trí lẻ đã nói “Đúng” nên tất cả những người ở vị trí chẵn đều nói “Không”. Tức là đáp số bằng 0.

Chú ý rằng ta không biết được trong 15 người ở vị trí lẻ có bao nhiêu người là Hiệp sĩ, có bao nhiêu người là Kẻ lừa dối và họ xếp ở những vị trí nào.

7 tháng 3 2017

Đáp án A

Phương pháp :

+) Chọn vị trí cho các bạn nam (hoặc nữ).

+) Hoán đổi các vị trí.

+) Sử dụng quy tắc nhân.

Cách giải : Chọn 1 vị trí trong 2 vị trí đối xứng có C 2 1 cách chọn, như vậy có ( C 2 1 ) 4   =   2 4 cách chọn ghế cho 4 bạn nam.

4 bạn nam này có thể đổi chỗ cho nhau nên có 4! cách xếp

Vậy có 4!4!24 cách xếp để mỗi bạn nam ngồi đối diện với một bạn nữ.

Câu 1: Có bao nhiêu cách sắp xếp 5 người khách gồm 3 nam và 2 nữ ngồi vào một hàng 5 ghế nếu:  a. Họ ngồi chỗ nào cũng được?  b. Nam ngồi kề nhau, nữ ngồi kề nhau?  c. Nam và nữ ngồi xen kẻ nhau?  d. Có 2 người luôn ngồi cạch nhau?Câu 2: Có bao nhiều cách sắp xếp chỗ ngồi cho 5 người khách: a.  Vào 5 ghế xếp thành một dãy sao cho vị khách A luôn ngồi chính giữa b. Vào 5 ghế chung quanh...
Đọc tiếp

Câu 1: Có bao nhiêu cách sắp xếp 5 người khách gồm 3 nam và 2 nữ ngồi vào một hàng 5 ghế nếu:

  a. Họ ngồi chỗ nào cũng được?
  b. Nam ngồi kề nhau, nữ ngồi kề nhau?
  c. Nam và nữ ngồi xen kẻ nhau?
  d. Có 2 người luôn ngồi cạch nhau?
Câu 2: Có bao nhiều cách sắp xếp chỗ ngồi cho 5 người khách:
 a.  Vào 5 ghế xếp thành một dãy sao cho vị khách A luôn ngồi chính giữa
 b. Vào 5 ghế chung quanh một bàn tròm, nếu không có sự phân biệt giữa các ghế này 
Câu 3: Có bao nhiêu cách sắp xếp chỗ ngồi 6 người ngồi vào một dãy 6 ghế hàng ngang nếu:
a. Có 3 người trong số đó muốn ngồi kề nhau
b. Có 2 người trong số đó không muốn ngồi kề nhau
Câu 4: Từ 5 bông vang, 3 bông trắng và 4 bông đỏ( các bông hoa xem như đôi một khác nhau ), ta chọn ra một bó gồm 7 bông:
a. Có bao nhiêu cách chọn ra bó hoa trong đó có đúng một bông đỏ
b. Có bao nhiêu cách chọn ra bó hoa trong đó có ít nhất 3 bông đỏ
c. Có bao nhiêu cách chọn ra bó hoa trong đó có mỗi màu có ít nhất 2 bông

0
10 tháng 5 2018

Đáp án A

Số cách để xếp 8 người vào bàn tròn là: 7!=5040

Để xếp sao cho hai nữ không ngồi cạnh nhau trước tiên ta xếp 5 nam trước: 4!=24

Giữa 5 nam có 5 chỗ trống, số cách để xếp 3 nữ vào 5 chỗ trống: nntTP8F1E56Y.png

Vậy xác suất để xếp sao cho hai nữ không ngồi cạnh nhau là:wiUQQ4NpP5u4.png

6 tháng 5 2018

29 tháng 9 2019

Đáp án B

2 tháng 8 2019

15 tháng 8 2016

số cách ngồi của 10 người là: \(\)v=10!

gọi A là biến cố " Ba và An ngồi cạnh nhau"

ta có :

số cách xếp chỗ An là 10 cách

số cách xếp chỗ Ba là 2 cách ( vì 2 bạn ngồi cạnh nhau)

số cách xếp cho 8 người còn lại là :8!

=> số cách Ba và An ngồi cạnh nhau là : 10.2.8!=20.8!

=> n(A)=20.8!=> P(A)=\(\frac{20.8!}{10!}=\frac{20}{9.10}=\frac{2}{9}\)