Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\frac{x}{3}=\frac{-y}{5}\)=> \(x=\frac{-3y}{5}\)
Thay \(x=\frac{-3y}{5}\)vào A, ta có:
\(\frac{5\left(\frac{-3y}{5}\right)^2+3y^2}{10\left(\frac{-3y}{5}\right)^2-3y^2}=\frac{5\left(\frac{9y^2}{25}\right)+3y^2}{10\left(\frac{9y^2}{25}\right)-3y^2}=\frac{\frac{45y^2}{25}+3y^2}{\frac{90y^2}{25}-3y^2}=\frac{\frac{45y^2+75y^2}{25}}{\frac{90y^2-75y^2}{25}}=\frac{\frac{120y^2}{25}}{\frac{25y^2}{25}}\)= \(\frac{120y^2}{25}.\frac{25}{25y^2}=\frac{120y^2}{25y^2}=4,8\)
Vậy giá trị của A là 4,8 khi \(\frac{x}{3}=\frac{-y}{5}\)
Câu 1 : Đặt A = 1.2.3 + 2.3.4 + ... + 111.112.113
=> 4A = 1.2.3.4 + 2.3.4.4 + ... + 111.112.113.4
= 1.2.3.4 + 2.3.4.(5 - 1) + .... + 111.112.113.(114 - 110)
= 1.2.34 + 2.3.4.5 - 1.2.3.4 + ... + 111.112.113.114 - 110.111.112.113
= 111.112.113.114
=> A = 111.113.114.28 = 40 037 256
Câu 2 Đặt A = 1.2 + 2.3 + 3.4 + ... + 277.278
=> 3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + 277.278.3
= 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 277.278.(279 - 276)
= 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 277.278.279 - 276.277.278
= 277.278.279
=> A = 7161558
3) Đặt A = 1.4 + 2.5 + ... + 277.280
= 1.(2 + 2) + 2.(2 + 3) + ... + 277.(278 + 2)
= (1.2 + 2.3 + .... + 277.278) + 2(1 + 2 + .... 277)
Đặt B = 1.2 + 2.3 + .... + 277.278
=> 3B = 1.2.3 + 2.3.3 + 3.4.3 + ... + 277.278.3
= 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 277.278.(279 - 276)
= 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 277.278.279 - 276.277.278
= 277.278.279
=> B = 7161558
Khi đó A = B + 2(1 + 2 + .... 277)
= 7161558 + 2.277(277 + 1) : 2
= 7238564
Câu 4 : \(\left(\frac{2^2}{2.4}+\frac{2^2}{4.6}+...+\frac{2^2}{34.36}\right)x-1\frac{1}{6}=1\frac{2}{3}\)
=> \(2\left(\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{34.36}\right)x-\frac{7}{6}=\frac{5}{3}\)
=> \(2\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{34}-\frac{1}{36}\right)x=\frac{17}{6}\)
=> \(\left(\frac{1}{2}-\frac{1}{36}\right)x=\frac{17}{12}\)
=> x = 3
Câu 5 : Đặt A = 1 + 2 + 22 + ... + 29 (1)
=> 2A = 2 + 22 + 23 + ... + 210 (2)
Lấy (2) trừ (1) theo vế ta có :
2A - A = (2 + 22 + 23 + ... + 210) - ( 1 + 2 + 22 + ... + 29)
A = 210 - 1 = 1024 - 1 = 1023
Câu 6 : Đặt A = 12 + 22 + 32 + .... + 1002
= 1.1 + 2.2 + 3.3 + ... + 100.100
= 1.(2 - 1) + 2(3 - 1) + 3(4 - 1) + ... + 100(101 - 1)
= (1.2 + 2.3 + 3.4 + ... + 100.101) - (1 + 2 + 3 + 4 + ... + 100)
Đặt B = 1.2 + 2.3 + 3.4 + ... + 100.101
=> 3B = 1.2.3 + 2.3.3 + 3.4.3 + ... + 100.101.3
= 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 100.101(102 - 99)
= 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + .... + 100.101.102 - 99.100.101
= 100.101.102
=> B = 343400
Khi đó A = B - (1 + 2 + 3 + 4 + ... + 100)
= 343 400 - [100.(100 + 1) : 2]
= 338 350
Vì \(\left|2x+1\right|\ge0;\left|x+y-\frac{1}{2}\right|\ge0\)
Mà \(\left|2x+1\right|+\left|x+y-\frac{1}{2}\right|\le0\Rightarrow\orbr{\begin{cases}2x+1=0\\x+y-\frac{1}{2}=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\y=\frac{1}{4}\end{cases}}\)(1)
Thế (1) vào A
\(\Rightarrow A=4.\left(-\frac{1}{2}\right)^3.\left(\frac{1}{4}\right)^2-\frac{1}{4}.\left(-\frac{1}{2}\right)+2.\frac{1}{4}-5\)
\(\Rightarrow A=-\frac{1}{2}+\frac{1}{8}+\frac{1}{2}-5\)
\(\Leftrightarrow A=\frac{1}{8}-5=\frac{1}{8}-\frac{40}{8}=-\frac{39}{8}\)
a) \(\frac{x+1}{99}+\frac{x+2}{98}=\frac{x+3}{97}+\frac{x+4}{96}\)
\(\Rightarrow\frac{x+1}{99}+1+\frac{x+2}{98}+1=\frac{x+3}{97}+1+\frac{x+4}{96}+1\)
\(\Rightarrow\frac{x+100}{99}+\frac{x+100}{98}-\frac{x+100}{97}-\frac{x+100}{96}=0\)
\(\Rightarrow\left(x+100\right)\left(\frac{1}{99}+\frac{1}{98}-\frac{1}{97}-\frac{1}{96}\right)=0\)
Vì 1/99 + 1/98 - 1/97 - 1/96 khác 0
=> x + 100 = 0 => x = -100
b) \(\frac{x-3}{47}+\frac{x-2}{48}=\frac{x-1}{49}+1\)
\(\Rightarrow\frac{x-3}{47}-1+\frac{x-2}{48}-1=\frac{x-1}{49}+1-2\)
\(\Rightarrow\frac{x-50}{47}+\frac{x-50}{48}-\frac{x-50}{49}=0\)
\(\Rightarrow\left(x-50\right)\left(\frac{1}{47}+\frac{1}{48}-\frac{1}{49}\right)=0\)
Vì 1/47 + 1/48 - 1/49 khác 0
Nên x -50 = 0 => x = 50
Ta có:
\(\frac{a}{5}=\frac{b}{-4}=\frac{a-b}{5-\left(-4\right)}=\frac{a-2b}{5-2\left(-4\right)}\)
Mà a - 2b = 26
\(\Rightarrow\frac{a-b}{5-2\left(-4\right)}=\frac{26}{13}=2\)
\(\Rightarrow\frac{a}{5}=2\)
\(a=2.5=10\)
\(\Rightarrow\frac{b}{-4}=2\)
\(b=2.\left(-4\right)=-8\)
Vậy a = 10
b = -8
Có : \(\frac{b}{-4}=\frac{2b}{-8}\)
Do \(\frac{a}{5}=\frac{b}{-4}\Rightarrow\frac{a}{5}=\frac{2b}{-8}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có :
\(\frac{a}{5}=\frac{2b}{-8}=\frac{a-2b}{5-\left(-8\right)}=\frac{26}{13}=2\)
\(\Rightarrow\hept{\begin{cases}a=5\cdot2=10\\2b=-8\cdot2=-16\Rightarrow b=\frac{-16}{2}=-8\end{cases}}\)
a) \(A=2^{24}=\left(2^3\right)^8=8^8.\)(1)
\(B=3^{16}=\left(3^2\right)^8=9^8\)(2)
Từ (1) và (2) \(\Rightarrow A< B\)
Vậy \(A< B.\)
b) \(B=\left(0,3\right)^{30}=\left(0,3^2\right)^{15}=0,09^{15}\)(1)
\(A=\left(0,1\right)^{15}\)(2)
Từ (1) và (2) \(\Rightarrow A>B\)
Vậy \(A>B.\)
c) \(A=\left(\frac{-1}{4}\right)^8=\left(\frac{1}{4}\right)^8=\left[\left(\frac{1}{2}\right)^2\right]^8=\left(\frac{1}{2}\right)^{16}\)(1)
\(B=\left(\frac{1}{8}\right)^5=\left[\left(\frac{1}{2}\right)^3\right]^5=\left(\frac{1}{2}\right)^{15}\)(2)
Từ (1) và (2) \(\Rightarrow A>B\)
Vậy \(A>B.\)
d) \(A=102^7=102^6.102\)(1)
\(B=9^{13}=9^{12}.9=\left(9^2\right)^6.9=81^6.9\)(2)'
Từ (1) và (2) \(\Rightarrow A>B\)
Vậy \(A>B.\)
e) \(8A=8\frac{8^{18}+1}{8^{19}+1}=\frac{8^{19}+8}{8^{19}+1}=1+\frac{7}{8^{19}+1}\)(1)
\(8B=8\frac{8^{23}+1}{8^{24+1}}=\frac{8^{24}+8}{8^{24}+1}=1+\frac{7}{8^{24}+1}\)(2)
Từ (1) và (2) \(\Rightarrow8A>8B\Rightarrow A>B\)
Vậy \(A>B.\)
f) \(A=\frac{5^5}{5+5^2+5^3+5^4}=\frac{5^4}{1+5+5^2+5^3}=\frac{625}{156}>\frac{468}{156}=3.\)(1)
\(B=\frac{3^5}{3+3^2+3^3+3^4}=\frac{3^4}{1+3+3^2+3^3}=\frac{81}{40}< \frac{120}{40}=3.\)(2)
Từ (1) và (2) \(\Rightarrow A>B\)
Vậy \(A>B.\)
a, ta có A=2^24=64^4
B=3^16=81^4
Vì 64^4<81^4
Vậy 2^24<3^36
b, ta có A=0,1^15
B=0,3^30=0,09^15
Vì 0,1^15< 0,09^15
Vậy 0,1^15<0,3^30
1) 35
2) (30 + 905 : 5 + 9) - (2 x 5 + 8 x 5)
= (30 + 181 + 9) - [(2 + 8) x 5]
= (30 + 190) - (10 x 5)
= 220 - 50
= 170
3) 8 + 290 : \(\frac{ans}{290}\)- 845 + 555
= 8 + 290 : 1 - 845 + 555
= 8 + 290 - 845 + 555
= 298 - 290
= 8
Học tốt!!!