Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\sqrt{a^2+b^2+c^2}\ge\frac{a+b+c}{\sqrt{3}}=\frac{2}{\sqrt{3}}\left(1\right)\)
Từ giả thuyết suy ra \(0\le a,b,c\le2\)
\(\Rightarrow\hept{\begin{cases}ab\ge0\\bc\ge0\\ca\ge0\end{cases}\left(2\right)}\)
\(\Rightarrow\hept{\begin{cases}a^2\le2a\\b^2\le2b\\c^2\le2c\end{cases}\left(3\right)}\)
Từ \(\left(1\right),\left(2\right),\left(3\right)\)suy ra:
\(P\ge\frac{2}{\sqrt{3}}+\frac{1}{4}=\frac{8+\sqrt{3}}{4\sqrt{3}}\)
Giả sử \(c=min\left\{a,b,c\right\}\)và đặt \(2t=a+b=-c\Rightarrow t=-\frac{c}{2}\)
+)Nếu \(c\ge0\) thì \(a,b\ge0\). Khi đó: \(P\ge3\)
Đẳng thức xảy ra khi \(a=b=c=0\)
+) Nếu \(c< 0\Rightarrow t>0\). Ta có:
\(P\ge\frac{\left(a^2+b^2+2\right)^2}{2}+\left(c^2+1\right)^2+\frac{3\sqrt{6}c\left(a+b\right)^2}{2}\) (vì c < 0)
\(\ge\frac{\left[\frac{\left(a+b\right)^2}{2}+2\right]^2}{2}+\left(c^2+1\right)^2+3\sqrt{6}c.\frac{\left(a+b\right)^2}{2}\)
\(=\frac{\left(2t^2+2\right)^2}{2}+\left(c^2+1\right)^2+6\sqrt{6}t^2c\)
\(=\frac{\left[2\left(-\frac{c}{2}\right)^2+2\right]^2}{2}+\left(c^2+1\right)^2+6\sqrt{6}\left(-\frac{c}{2}\right)^2c\)
\(=\frac{9}{8}c^2\left(c+\frac{2\sqrt{6}}{3}\right)^2+3\ge3\)
\(\left(a;b;c\right)=\left(\sqrt{\frac{2}{3}};\sqrt{\frac{2}{3}};-2\sqrt{\frac{2}{3}}\right)\) (và các hoán vị, trong trường hợp tổng quát)
Vậy....
P/s: Em không chắc lắm, chưa check lại.
mình đánh nhầm, đề là cho a,b,c là các số thực dương tổng bằng 1
Trục căn thức:
\(\frac{5}{a+b\sqrt{2}}-\frac{4}{a-b\sqrt{2}}+18\sqrt{2}=3\)
<=> \(\frac{5\left(a-b\sqrt{2}\right)}{a^2-2b^2}-\frac{4\left(a+b\sqrt{2}\right)}{a^2-2b^2}+18\sqrt{2}=3\)
<=> \(\left(\frac{5a}{a^2-2b^2}-\frac{4a}{a^2-2b^2}-3\right)+\left(18-\frac{5b}{a^2-2b^2}-\frac{4b}{a^2-2b^2}\right)=0\)(1)
Vì a và b là số nguyên nên:
(1) <=> \(\hept{\begin{cases}\frac{5a-4a}{a^2-2b^2}=3\\\frac{5b+4b}{a^2-2b^2}=18\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{a}{a^2-2b^2}=3\\\frac{b}{a^2-2b^2}=2\end{cases}}\)( a; b khác 0)
<=> \(\hept{\begin{cases}a=\frac{3}{2}b\\\frac{b}{\frac{9}{4}b^2-2b^2}=2\end{cases}}\Leftrightarrow a=3;b=2\)
Vậy:...
Bài 2:b) \(9=\left(\frac{1}{a^3}+1+1\right)+\left(\frac{1}{b^3}+1+1\right)+\left(\frac{1}{c^3}+1+1\right)\)
\(\ge3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\therefore\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le3\)
Ta sẽ chứng minh \(P\le\frac{1}{48}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)
Ai có cách hay?
1/Đặt a=1/x,b=1/y,c=1/z ->x+y+z=1.
2a) \(VT=\frac{\left(\frac{1}{a^3}+\frac{1}{b^3}\right)\left(\frac{1}{a}+\frac{1}{b}\right)}{\frac{1}{a}+\frac{1}{b}}\ge\frac{\left(\frac{1}{a^2}+\frac{1}{b^2}\right)^2}{\frac{1}{a}+\frac{1}{b}}\)
\(=\frac{\left[\frac{\left(a^2+b^2\right)^2}{a^4b^4}\right]}{\frac{a+b}{ab}}=\frac{\left(a^2+b^2\right)^2}{a^3b^3\left(a+b\right)}\ge\frac{\left(a+b\right)^3}{4\left(ab\right)^3}\)
\(\ge\frac{\left(a+b\right)^3}{4\left[\frac{\left(a+b\right)^2}{4}\right]^3}=\frac{16}{\left(a+b\right)^3}\)
\(4\le\left(a^2+b^2\right)\left(4-a^2-b^2\right)\)\(\Leftrightarrow\)\(\left(a^2+b^2-2\right)^2\le0\)
\(\Rightarrow\)\(b=\sqrt{2-a^2}\)
có : \(a\le\frac{1}{2}a^2+\frac{1}{2}\)
\(M=\frac{1}{a}+\frac{1}{\sqrt{2-a^2}}-a-\sqrt{2-a^2}\ge\frac{1}{a}+\frac{2}{3-a^2}-\frac{a^2}{2}-\frac{1}{2}-\frac{3-a^2}{2}\)
\(\ge\frac{2}{a^2+1}+\frac{2}{3-a^2}-2\ge\frac{8}{a^2+1+3-a^2}-2=0\)