K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2016

Cho ∆ABC vuông tại A. Vẽ về phía ngoài ∆ đó ∆ABD vuông cân tại B và ∆ACE vuông cân tại C. Gọi H là giao điểm của AB và CD, K là giao điểm của AC và BE. Chứng minh rằng: 1, AH = AK 2, AH.AH = BH.CK

26 tháng 12 2016

Bạn nào giải hộ mình với?

4 tháng 12 2017

Ta có MN song song và bằng QP (vì cùng song song với AC và bằng 1/2 của AC theo tính chất đường trung bình của tam giác)

Vậy MNPQ là hình bình hành vì có 2 canh đối song song và bằng nhau. 

mk chi lam dc y a thui

4 tháng 12 2017

mơn nhìu nha

31 tháng 10 2022

Bài 1:

a: Xét tứ giác ABEF có

BE//AF

BE=AF

BE=BA

Do đó: ABEF là hình thoi

b: Xét ΔBIE có BI=BE

nên ΔBIE cân tại B

mà góc IBE=60 độ

nên ΔBIE đều

=>góc I=60 độ

Xét tứ giác AFEI có

EF//AI

góc I=góc A

Do đó AFEI là hình thang cân

c: Xét ΔBAD có

BF là đường trung tuyến

BF=AD/2

Do đó: ΔBAD vuông tại B

=>DB vuông góc với BI

Xét tứ giác BICD có

BI//CD

BI=CD

Do đó: BICD là hình bình hành

mà DB vuông góc với BI

nên BICD là hình chữ nhật

d: Xét ΔAED có

EF la trung tuyến

FE=DA/2

Do đó: ΔAED vuông tại E

=>góc AED=90 độ

10 tháng 11 2017

A B C D M N P Q

xét tam giác ADC có Q là trung điểm của AD(gt)

P là trung điểm của DC (gt)

=> QP là đường trung bình của tam giác ADC

=> QP=AC/2, QP// AC (1)

xét tam giác ABC có M là trung điểm của AB (gt)

N là trung điểm của BC (gt)

=> NM là đường trung bình của tam giác ABC

=> NM = AC/2, NM // AC (2)

từ (1) và (2) => NM = QP, NM // QP => MNPQ là HBH(vì là tứ giác có 2 cạnh đối vừa // vừa = nhau)

b) ABCD là Hthang cân => \(\widehat{BAD}=\widehat{ABC}\), AD = BC (t/c Hthang cân)

AD = BC => AQ = BN

xét tam giác AQM và tam giác MBN

có AM=MB (gt)

\(\widehat{QAM}=\widehat{MBN}\)(cmt)

AQ = BN (cmt)

=> tam giác AQM = tam giác BNM(c-g-c)

=> QM=MN (2 cạnh tương ứng)

HBH MNPQ có QM = MN (cmt)

=> MNPQ là Hthoi (vì là HB có 2 cạnh kề = nhau)

MP là đường chéo => MP là tia phân giác của \(\widehat{QMN}\)(t/c Hthoi)