K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Nhiệt độ ban đầu là:

\(T=25+70\cdot e^{-0.5\cdot0}=95\left(^0C\right)\)

b: ĐặtT=30

=>\(25+70\cdot e^{-0.5t}=30\)

=>\(e^{-0.5t}=\dfrac{1}{14}\)

=>\(-0.5t=ln\left(\dfrac{1}{14}\right)\)

=>\(t\simeq5,28\simeq6\)

=>Sau 6 phút thì nhiệt độ còn lại tầm 30 độ C

Chọn C

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

\(\begin{array}{l} - 1 \le sin\frac{\pi }{{12}}(t - 9)\; \le 1\\ \Leftrightarrow  - 3 \le 3sin\frac{\pi }{{12}}(t - 9)\; \le 3\\ \Leftrightarrow  - 26 \le 29 + 3sin\frac{\pi }{{12}}(t - 9)\; \le 32\\ \Leftrightarrow  - 26 \le h(t) \le 32\end{array}\)

Vâỵ nhiệt độ thấp nhất trong ngày là 26°C khi:

\(\begin{array}{l}29 + 3sin\frac{\pi }{{12}}(t - 9) = 26\\ \Leftrightarrow sin\frac{\pi }{{12}}(t - 9) =  - 1\\ \Leftrightarrow \frac{\pi }{{12}}(t - 9) =  - \frac{\pi }{2} + k2\pi \\ \Leftrightarrow t = 3 + 24k,k \in \mathbb{Z}.\end{array}\)

Do t là thời gian trong ngày tính bằng giờ nên \(0 \le t \le 24\). Suy ra: \(k = 0 \Rightarrow t = 3\).

Vì vậy vào thời điểm 3 giờ trong ngày thì nhiều độ thấp nhất của thành phố là 26°C.

Đáp án: C

QT
Quoc Tran Anh Le
Giáo viên
26 tháng 8 2023

Mấy câu trả lời SGK trình bày giúp anh Latex cái hoặc gõ ra nhưng gõ định dạng ấy em. Chứ như thế này anh sợ nhiều người không đọc được chữ ấy, mặc dù anh cũng đọc được.

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Ta có:

\(\begin{array}{l}P'\left( t \right) = \frac{{{{\left( {500t} \right)}^\prime }\left( {{t^2} + 9} \right) - \left( {500t} \right){{\left( {{t^2} + 9} \right)}^\prime }}}{{{{\left( {{t^2} + 9} \right)}^2}}}\\ = \frac{{500\left( {{t^2} + 9} \right) - \left( {500t} \right).2t}}{{{{\left( {{t^2} + 9} \right)}^2}}}\\ = \frac{{500{t^2} + 4500 - 1000{t^2}}}{{{{\left( {{t^2} + 9} \right)}^2}}} = \frac{{4500 - 500{t^2}}}{{{{\left( {{t^2} + 9} \right)}^2}}}\end{array}\)

Tốc độ tăng dân số tại thời điểm \(t = 12\) là: \(P'\left( {12} \right) = \frac{{4500 - 500{t^2}}}{{{{\left( {{t^2} + 9} \right)}^2}}} \approx  - 2,88\).

Trong Vật lí, phương trình tổng quát của một vật dao động điều hòa cho bởi công thức \(x\left( t \right) = A.\cos \left( {\omega t + \varphi } \right),\;\)trong đó t là thời điểm (tính bằng giây), x(t) là li độ của vật tại thời điểm t, A là biên độ dao động (A > 0) và \(\varphi  \in \left[ { - \pi ;\pi } \right]\) là pha ban đầu của dao động.Xét hai dao động điều hòa có phương trình:         \({x_1}\left(...
Đọc tiếp

Trong Vật lí, phương trình tổng quát của một vật dao động điều hòa cho bởi công thức \(x\left( t \right) = A.\cos \left( {\omega t + \varphi } \right),\;\)trong đó t là thời điểm (tính bằng giây), x(t) là li độ của vật tại thời điểm t, A là biên độ dao động (A > 0) và \(\varphi  \in \left[ { - \pi ;\pi } \right]\) là pha ban đầu của dao động.

Xét hai dao động điều hòa có phương trình:

         \({x_1}\left( t \right) = 2.\cos \left( {\frac{\pi }{3}t + \frac{\pi }{6}} \right)\left( {cm} \right)\)

          \({x_2}\left( t \right) = 2.\cos \left( {\frac{\pi }{3}t - \frac{\pi }{3}} \right)\left( {cm} \right)\)

Tìm dao động tổng hợp \(x\left( t \right) = {x_1}\left( t \right) + {x_2}\left( t \right)\) và sử dụng công thức biến đổi tổng thành tích để tìm biên độ và pha ban đầu của dao động tổng hợp này.

1
HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Ta có: \(x\left( t \right) = {x_1}\left( t \right) + {x_2}\left( t \right) = 2\left[ {\cos \left( {\frac{\pi }{3}t + \frac{\pi }{6}} \right) + \cos \left( {\frac{\pi }{3}t - \frac{\pi }{3}} \right)} \right]\)

          \(2\left[ {\cos \left( {\frac{{\frac{\pi }{3}t + \frac{\pi }{6} + \frac{\pi }{3}t - \frac{\pi }{3}}}{2}} \right).\cos \left( {\frac{{\frac{\pi }{3}t + \frac{\pi }{6} - \frac{\pi }{3}t + \frac{\pi }{3}}}{2}} \right)} \right] = 2\left[2. {\cos \left( {\frac{\pi }{3}t - \frac{\pi }{{12}}} \right).\cos \frac{\pi }{4}} \right] = 2\sqrt 2 \cos \left( {\frac{\pi }{3}t - \frac{\pi }{{12}}} \right)\)

Vậy biên độ là \(2\sqrt 2 \), pha ban đầu \( - \frac{\pi }{{12}}\)

AH
Akai Haruma
Giáo viên
22 tháng 9 2021

Lời giải:

$\sin (\frac{\pi t}{18}-\frac{\pi}{6})\leq 1$ với mọi $t\in [0;24]$

$\Rightarrow h\leq 2.1+5=7$ 

Vậy $h_{\max}=7\Leftrightarrow \sin (\frac{\pi t}{18}-\frac{\pi}{6})=1$

$\Leftrightarrow \frac{\pi t}{18}-\frac{\pi}{6})=\frac{\pi}{2}+2k\pi$ với $k$ nguyên 

$\Leftrightarrow \frac{t}{18}-\frac{1}{6}=\frac{1}{2}+2k$ với $k$ nguyên 

$\Leftrightarrow t=12+36k$ với $k$ nguyên.

Do $t\in [0;24]$ nên $t=12$ 

Đáp án C.

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Hàm số \(T\left( t \right)\) có tập xác định là \(\left[ {0;100} \right]\).

Ta có: \(T\left( {60} \right) = 10 + 2.60 = 130\)

\(\begin{array}{l}\mathop {\lim }\limits_{t \to {{60}^ + }} T\left( t \right) = \mathop {\lim }\limits_{t \to {{60}^ + }} \left( {k - 3t} \right) = k - 3.60 = k - 180\\\mathop {\lim }\limits_{t \to {{60}^ - }} T\left( t \right) = \mathop {\lim }\limits_{t \to {{60}^ - }} \left( {10 + 2t} \right) = 10 + 2.60 = 130\end{array}\)

Để hàm số liên tục trên tập xác định thì hàm số phải liên tục tại điểm \({t_0} = 60\)

Khi đó: \(\mathop {\lim }\limits_{t \to {{60}^ + }} T\left( t \right) = \mathop {\lim }\limits_{t \to {{60}^ - }} T\left( t \right) = T\left( {60} \right) \Leftrightarrow k - 180 = 130 \Leftrightarrow k = 310\)

Vậy với \(k = 310\) thì hàm số \(T\left( t \right)\) liên tục trên tập xác định.

Trong vật lí, ta biết rằng phương trình tổng quát của một vật dao động điều hòa cho bởi công thức \(x\left( t \right) = A\cos (\omega t + \varphi )\), trong đó t là thời điểm (tính bằng giây), x(t) là li độ của vật tại thời điểm t, A là biên độ dao động (A > 0), \(\omega t + \varphi \) là pha dao động tại thời điểm t và \(\varphi  \in \left[ { - \pi ;\pi } \right]\) là pha ban đầu của dao động. Dao động...
Đọc tiếp

Trong vật lí, ta biết rằng phương trình tổng quát của một vật dao động điều hòa cho bởi công thức \(x\left( t \right) = A\cos (\omega t + \varphi )\), trong đó t là thời điểm (tính bằng giây), x(t) là li độ của vật tại thời điểm t, A là biên độ dao động (A > 0), \(\omega t + \varphi \) là pha dao động tại thời điểm t và \(\varphi  \in \left[ { - \pi ;\pi } \right]\) là pha ban đầu của dao động. Dao động điều hòa này có chu kỳ \(T = \frac{{2\pi }}{\omega }\) (tức là khoảng thời gian để vật thực hiện một dao động toàn phần).

Giả sử một vật dao động điều hòa theo phương trình \(x\left( t \right) =  - 5\cos 4\pi t\) (cm).

a) Hãy xác định biên độ và pha ban đầu của dao động.

b) Tính pha của dao động tại thời điểm \(t = 2\) (giây). Hỏi trong khoảng thời gian 2 giây, vật thực hiện được bao nhiêu dao động toàn phần?

1
HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Biên độ dao động \(A =  - 5\); Pha ban đầu của dao động: \(\varphi  = 0\)

b) Pha dao động tại thời điểm \(t = 2\) à \(\omega t + \varphi  = 4\pi .2 = 8\pi \)

Chu kỳ \(T = \frac{{2\pi }}{\omega } = \frac{{2\pi }}{{4\pi }} = 0,2\)

Trong khoảng thời gian 2 giây, số dao động toàn phần vật thực hiện được là: \(\frac{2}{{0,2}} = 10\) (dao động)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

+) Độ sâu của mực nước là 15m thì h = 15.

Khi đó

 \(\begin{array}{l}15 = 3\cos \left( {\frac{{\pi t}}{6} + 1} \right) + 12\\ \Leftrightarrow \cos \left( {\frac{{\pi t}}{6} + 1} \right) = 1\\ \Leftrightarrow \cos \left( {\frac{{\pi t}}{6} + 1} \right) = \cos 0\\ \Leftrightarrow \frac{{\pi t}}{6} + 1 = k2\pi \\ \Leftrightarrow t = \frac{{6\left( {k2\pi  - 1} \right)}}{\pi };k \in Z\end{array}\)

Vì \(0 \le t < 24\) nên

 \(\begin{array}{l}0 \le \frac{{6\left( {k2\pi  - 1} \right)}}{\pi } \le 24\\ \Leftrightarrow 0 < k \le 2\end{array}\)

Lại do \(k \in Z \Rightarrow k \in \left\{ {1;2} \right\} \Rightarrow t \in \left\{ {\frac{{6\left( {2\pi  - 1} \right)}}{\pi };\frac{{6\left( {4\pi  - 1} \right)}}{\pi }} \right\}\)

+) Độ sâu của mực nước là 9m thì h = 9.

Khi đó

 \(\begin{array}{l}9 = 3\cos \left( {\frac{{\pi t}}{6} + 1} \right) + 12\\ \Leftrightarrow \cos \left( {\frac{{\pi t}}{6} + 1} \right) =  - 1\\ \Leftrightarrow \cos \left( {\frac{{\pi t}}{6} + 1} \right) = \cos \pi \\ \Leftrightarrow \frac{{\pi t}}{6} + 1 = \pi  + k2\pi \\ \Leftrightarrow t = \frac{{6\left( {k2\pi  + \pi  - 1} \right)}}{\pi };k \in Z\end{array}\)

Vì \(0 \le t < 24\) nên

 \(\begin{array}{l}0 \le \frac{{6\left( {k2\pi  + \pi  - 1} \right)}}{\pi } \le 24\\ \Leftrightarrow 0 < k \le 1\end{array}\)

Lại do \(k \in Z \Rightarrow k = 1 \Rightarrow t = \frac{{6\left( {3\pi  - 1} \right)}}{\pi }\)

+) Độ sâu của mực nước là 10,5m thì h = 10,5.

Khi đó

 \(\begin{array}{l}10,5 = 3\cos \left( {\frac{{\pi t}}{6} + 1} \right) + 12\\ \Leftrightarrow \cos \left( {\frac{{\pi t}}{6} + 1} \right) =  - \frac{1}{2}\\ \Leftrightarrow \cos \left( {\frac{{\pi t}}{6} + 1} \right) = \cos \frac{{2\pi }}{3}\\ \Leftrightarrow \left[ \begin{array}{l}\frac{{\pi t}}{6} + 1 = \frac{{2\pi }}{3} + k2\pi \\\frac{{\pi t}}{6} + 1 =  - \frac{{2\pi }}{3} + k2\pi \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}t = \frac{{6\left( {\frac{{2\pi }}{3} + k2\pi  - 1} \right)}}{\pi };k \in Z\\t = \frac{{6\left( { - \frac{{2\pi }}{3} + k2\pi  - 1} \right)}}{\pi };k \in Z\end{array} \right.\end{array}\)

Với \(t = \frac{{6\left( {\frac{{2\pi }}{3} + k2\pi  - 1} \right)}}{\pi };k \in Z\)

Vì \(0 \le t < 24\) nên

 \(\begin{array}{l}0 \le \frac{{6\left( {\frac{{2\pi }}{3} + k2\pi  - 1} \right)}}{\pi } \le 24\\ \Leftrightarrow 0 \le k \le 2\end{array}\)

Lại do \(k \in Z \Rightarrow k \in \left\{ {0;1;2} \right\} \Rightarrow t \in \left\{ {\frac{{6\left( {\frac{{2\pi }}{3} - 1} \right)}}{\pi };\frac{{6\left( {\frac{{8\pi }}{3} - 1} \right)}}{\pi };\frac{{6\left( {\frac{{14\pi }}{3} - 1} \right)}}{\pi }} \right\}\)

Với \(t = \frac{{6\left( { - \frac{{2\pi }}{3} + k2\pi  - 1} \right)}}{\pi };k \in Z\)

Vì \(0 \le t < 24\) nên

 \(\begin{array}{l}0 \le \frac{{6\left( { - \frac{{2\pi }}{3} + k2\pi  - 1} \right)}}{\pi } \le 24\\ \Leftrightarrow 0 < k \le 2\end{array}\)

Lại do \(k \in Z \Rightarrow k \in \left\{ {1;2} \right\} \Rightarrow t \in \left\{ {\frac{{6\left( { - \frac{{2\pi }}{3} - 1} \right)}}{\pi };\frac{{6\left( {\frac{{4\pi }}{3} - 1} \right)}}{\pi };\frac{{6\left( {\frac{{10\pi }}{3} - 1} \right)}}{\pi }} \right\}\)

HQ
Hà Quang Minh
Giáo viên
25 tháng 8 2023

Ta có: \(s\in\left[-1;1\right]\Leftrightarrow-1\le2cos\left(\pi t\right)\le1\\ \Leftrightarrow-\dfrac{1}{2}\le cos\left(\pi t\right)\le\dfrac{1}{2}\)

Trong 1s đầu tiên \(0< t< 1\Rightarrow0< \pi t< \pi\)

Ta có đồ thị hàm số \(y=cos\left(x\right)\) trên \(\left[0;\pi\right]\)

Dựa vào đồ thị, ta thấy 

\(-\dfrac{1}{2}\le cos\left(\pi t\right)\le\dfrac{1}{2}\Leftrightarrow\dfrac{\pi}{3}\le\pi t\le\dfrac{2\pi}{3}\Leftrightarrow\dfrac{1}{3}\le t\le\dfrac{2}{3}\)

Vậy \(t\in\left[\dfrac{1}{3};\dfrac{2}{3}\right]\)