Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gỉa sử ba số a,b,c là ba số bất kì được chọn mà a+b,b+c,a+c đều chia hết cho 28.
Xét hai trường hợp:
TH1:
Trong ba số a,b,c có ít nhất một số chia hết cho 28. Khi đó hai số kia cũng phải chia hết cho 28. Do đó cả ba số chia hết cho 28.
Ta có 2017:28 = 72 (dư 1).
Như vậy nếu ta chọn trong dãy các số 28, 28.2; 28.3;....;28.72 thì ta chọn được nhiều nhất 72 số.
TH2:
Trong ba số a, b, c không có số nào chia hết cho 28.
Gọi số dư của 3 số khi chia cho 28 là x, y, z.
Do a + b; b + c; c + a chia hết cho 28 nên x + y = y + z = z + x = 28. Suy ra x = y = z = 14.
Do đó mỗi số a, b, c chia 28 dư 14.
Ta có 2017 : 14 = 144 (dư 1)
Như vậy nếu ta chọn trong dãy các số:14; 14.3;14. 5;......; 14.143.
Thì ta chọn nhiều nhất 73 số.
So sánh hai trường hợp ta chọn được nhiều nhất 73 số thỏa mãn bài toán.
Nguyễn Minh bạn chỉ đăng 1,2 câu trả lời thôi nhé , chứ dài quá
Mình sẽ làm bài 1,2
1.\(a,\frac{61}{11}x+\frac{97}{11}x+\frac{25}{11}=\frac{37}{11}x-\frac{8}{11}\)
\(\Leftrightarrow\frac{61}{11}x+\frac{97}{11}x+\frac{25}{11}-\frac{37}{11}x=-\frac{8}{11}\)
\(\Leftrightarrow\frac{61}{11}x+\frac{97}{11}x-\frac{37}{11}x+\frac{25}{11}=-\frac{8}{11}\)
\(\Leftrightarrow\frac{121}{11}x=-3\)
\(\Leftrightarrow11x=-3\Leftrightarrow x=-\frac{3}{11}\)
\(b,3x-\frac{15}{5\cdot8}-\frac{15}{8\cdot11}-\frac{15}{11\cdot14}-...-\frac{15}{47\cdot50}=\frac{21}{10}\)
\(3x-\left[\frac{15}{5\cdot8}-\frac{15}{8\cdot11}-\frac{15}{11\cdot14}-...-\frac{15}{47\cdot50}\right]=\frac{21}{10}\)
\(3x-\left[5\left\{\frac{3}{5\cdot8}-\frac{3}{8\cdot11}-\frac{3}{11\cdot14}-...-\frac{3}{47\cdot50}\right\}\right]=\frac{21}{10}\)
Làm nốt :v
2. Gọi hai phân số đó là \(\frac{a}{b}\)và \(\frac{c}{d}\)
Theo đề bài ta có : \(\frac{a}{b}+\frac{c}{d}=\frac{4}{33}\Rightarrow\frac{ad+bc}{bd}=\frac{4}{33}\Rightarrow ad+bc=\frac{4}{33}bd\)
\(\frac{a}{b}\cdot\frac{c}{d}=-\frac{4}{11}\Rightarrow\frac{bd}{ac}=\frac{-11}{4}\)
Tổng các số nghịch đảo của hai phân số trên là :
\(\frac{b}{a}+\frac{d}{c}=\frac{bc+ad}{ac}=\frac{\frac{4}{33}bd}{ac}=\frac{4}{33}\cdot\left[-\frac{11}{4}\right]=-\frac{1}{3}\)