Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(x^3-6x^2-25x-18=0\Leftrightarrow x^3+2x^2-8x^2-16x-9x-18=0\Leftrightarrow x^2\left(x+2\right)-8x\left(x+2\right)-9\left(x+2\right)=0\)\(\Leftrightarrow\left(x+2\right)\left(x^2+x-9x-9\right)=0\Leftrightarrow\left(x+2\right)\left(x+1\right)\left(x-9\right)=0\)
Vậy x=-2;-1;9 hay x min = -2
\(x^3-6x^2-25x-18=0\)
<=> \(x^3-9x^2+3x^2-27x+2x-18=0\)
<=> \(x^2\left(x-9\right)+3x\left(x-9\right)+2\left(x-9\right)=0\)
<=> \(\left(x-9\right)\left(x^2+3x+2\right)=0\)
<=> \(\left(x-9\right)\left(x+1\right)\left(x+2\right)=0\)
..................
làm nốt
\(x^3-6x^2-25x-18=0\)
\(\Leftrightarrow x^2\left(x+1\right)-7x\left(x+1\right)-18\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-7x-18\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+2x-9x-18\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left[x\left(x+2\right)-9\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+2\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x+1=0\\x+2=0\\x-9=0\end{array}\right.\Leftrightarrow\left[\begin{array}{nghiempt}x=-1\\x=-2\\x=9\end{array}\right.\)
Vậy nghiệm nhỏ nhất của phương trình là \(-2\)
1) \(x^4-6x^3-x^2+54x-72=0\)
\(\Leftrightarrow x^3\left(x-2\right)-4x^2\left(x-2\right)-9x\left(x-2\right)+36\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-4x^2-9x+36\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x-4\right)-9\left(x-4\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x^2-9\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x-3\right)\left(x+3\right)=0\)
Tự làm nốt...
2) \(x^4-5x^2+4=0\)
\(\Leftrightarrow x^2\left(x^2-1\right)-4\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)
Tự làm nốt...
\(x^4-2x^3-6x^2+8x+8=0\)
\(\Leftrightarrow x^3\left(x-2\right)-6x\left(x-2\right)-4\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-6x-4\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+2\right)-2x\left(x+2\right)-2\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2-2x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left[\left(x-1\right)^2-\left(\sqrt{3}\right)^2\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-1-\sqrt{3}\right)\left(x-1+\sqrt{3}\right)=0\)
...
\(2x^4-13x^3+20x^2-3x-2=0\)
\(\Leftrightarrow2x^3\left(x-2\right)-9x^2\left(x-2\right)+2x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x^3-9x^2+2x+1\right)=0\)
Bí
a) \(x^2+7x+10=0\)
\(\Leftrightarrow x^2+2x+5x+10=0\)
\(\Leftrightarrow x\left(x+2\right)+5\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-5\end{cases}}\)
Vậy....
b) \(x^3=25x\)
\(\Leftrightarrow x^3-25x=0\)
\(\Leftrightarrow x\left(x^2-25\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-25=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x\in\left\{\pm5\right\}\end{cases}}\)
Vậy....
a) Gần giống cho nó giống luôn.
cần thêm (-x^3+2x^2-x) là giống
\(\left(x-1\right)^4+x^3-2x^2+x=\left(x-1\right)^4+x\left(x^2-2x+1\right)=\left(x-1\right)^4+x\left(x-1\right)^2\)
\(\left(x-1\right)^2\left[\left(x-1\right)^2+x\right]\)
\(\left[\begin{matrix}x-1=0\Rightarrow x=0\\\left(x-1\right)^2+x=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=0\end{matrix}\right.\)
Nghiệm duy nhất: x=1
Mình giải cho bạn rồi, bạn vào xem lại lời giải nhé:
http://olm.vn/hoi-dap/question/430226.html
Ta có:x^3-6x^2-25x-18=0 <=> x^3+2x^2-8x^2-16x-9x-18=0
<=> x^2 (x+2)-8x(x+2)-9(x+2)=0 <=> (x+2)(x2+x−9x−9)=0⇔(x+2)(x+1)(x−9)=0
Vậy x=-2;-1;9 hay x min = -2
chúc cậu năm mới vui vẻ