K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
1 tháng 12 2017

Lời giải:

Ta có:

\(2.16^x-(3+\sqrt{2})12^x+(1+\sqrt{2}).9^x=0\)

\(\Leftrightarrow 2\left(\frac{16}{9}\right)^x-(3+\sqrt{2})\left(\frac{12}{9}\right)^x+1+\sqrt{2}=0\)

\(\Leftrightarrow 2\left(\frac{4}{3}\right)^{2x}-(3+\sqrt{2})\left(\frac{4}{3}\right)^x+1+\sqrt{2}=0\)

Đặt \(\left(\frac{4}{3}\right)^x=t\Rightarrow 2t^2-(3+\sqrt{2})t+1+\sqrt{2}=0\)

\(\Rightarrow t=1\) hoặc \(t=\frac{1+\sqrt{2}}{2}\) (đều thỏa mãn)

Nếu \(t=1\Leftrightarrow \left(\frac{4}{3}\right)^x=1\Leftrightarrow x=0\)

Nếu \(t=\frac{1+\sqrt{2}}{2}\Leftrightarrow \left(\frac{4}{3}\right)^x=\frac{1+\sqrt{2}}{2}\)

\(\Leftrightarrow x= \log_{\frac{4}{3}}\frac{1+\sqrt{2}}{2}\)

17 tháng 8 2019

- Hầu như các OLmers toàn tầm khoảng 2k4 đến 2k9 nên mk nghĩ là câu này của bn khó cs ai TL đc =))

- Mk nghĩ bn nên vào web : H để đăng bài ! Vì mk thấy ở đó chuyên giải mấy bài khó -,-

- Hoăc bn cs thể nhờ https://olm.vn/thanhvien/linhchi_nguyenthi1997 ( cj này là quản lý của olm và hay giải mấy bài khó )

Ckuc bn hok tốt =))

AH
Akai Haruma
Giáo viên
14 tháng 7 2020

d)

TXĐ: $\mathbb{R}$

Ta có: $y=\sqrt{(x^2-3x-2)^2}$ nên $y'=\frac{(2x-3)(x^2-3x-2)}{|x^2-3x-2|}$

Hàm số không có đạo hàm tại $x^2-3x-2=0\Leftrightarrow x=\frac{3\pm \sqrt{17}}{2}$

\(y'=0\Leftrightarrow \left\{\begin{matrix} (2x-3)(x^2-3x-2)=0\\ x\in\mathbb{R}\setminus \left\{\frac{3\pm \sqrt{17}}{2}\right\}\end{matrix}\right.\Leftrightarrow x=\frac{3}{2}\)

BBT:

Bài 1: Sự đồng biến và nghịch biến của hàm số

Vậy hàm số đồng biến trên mỗi khoảng $(\frac{3-\sqrt{17}}{2}; \frac{3}{2})$ và $(\frac{3+\sqrt{17}}{2}; +\infty)$, nghịch biến trên mỗi khoảng $(-\infty; \frac{3-\sqrt{17}}{2})$ và $(\frac{3}{2}; \frac{3+\sqrt{17}}{2})$

AH
Akai Haruma
Giáo viên
14 tháng 7 2020

c)
TXĐ: $[2;4]$

Ta có:

\(y'=\frac{1}{2}\left(\frac{1}{\sqrt{x-2}}-\frac{1}{\sqrt{4-x}}\right)\). Hàm số không có đạo hàm tại $x=2; x=4$

\(y'=0\Leftrightarrow \left\{\begin{matrix} \sqrt{x-2}=\sqrt{4-x}\\ x\in (2;4)\end{matrix}\right.\Leftrightarrow x=3\)

BBT:

Bài 1: Sự đồng biến và nghịch biến của hàm số

Vậy $y$ đồng biến trên khoảng $(2;3)$ và nghịch biến trên khoảng $(3;4)$

NV
18 tháng 5 2019

\(x+\frac{1}{x}\ge2\sqrt{x.\frac{1}{x}}=2\Rightarrow2^{x+\frac{1}{x}}\ge2^2=4\Rightarrow VT\ge4\)

Xét biểu thức dưới hàm logarit vế phải:

\(14-\left(y-2\right)\sqrt{y+1}=14-\left(y+1\right)\sqrt{y+1}+3\sqrt{y+1}\)

Đặt \(t=\sqrt{y+1}\ge0\) thì \(f\left(t\right)=14-t^3+3t\)

\(f'\left(t\right)=-3t^2+3=0\Rightarrow t=1\)

Dễ dạng nhận ra đây là điểm cực đại của hàm \(f\left(t\right)\)

\(\Rightarrow f\left(t\right)_{max}=f\left(1\right)=16\)

\(\Rightarrow VP\le log_216=4\le VT\)

Đẳng thức xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}x=\frac{1}{x}\\t=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^2=1\\\sqrt{y+1}=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)

\(\Rightarrow P=1+0+0+1=2\)

- Nếu đề là \(2^{x+\frac{1}{2}}\) thì \(VT>\sqrt{2}\) hoàn toàn ko thể đánh giá được P, vì miền giá trị của VT và VP trùng nhau 1 đoạn (x;y) rất dài cho nên sẽ có vô số giá trị P xảy ra nên mình khẳng định luôn là đề sai

NV
18 tháng 5 2019

Đề bài là \(2^{x+\frac{1}{2}}\) hả bạn? Với đề này thì ko giải được

NV
18 tháng 5 2019

\(4^{x-1}+2^{x+3}-4=0\)

\(\Leftrightarrow\frac{1}{4}.4^x+8.2^x-4=0\)

Đặt \(2^x=a>0\) phương trình trở thành:

\(\frac{a^2}{4}+8a-4=0\) (1)

Do \(\frac{1}{4}.\left(-4\right)< 0\Rightarrow\left(1\right)\) luôn có 2 nghiệm trái dấu \(\Rightarrow\left(1\right)\) có đúng 1 nghiệm dương \(\Rightarrow\) pt đã cho có 1 nghiệm thực duy nhất

Nếu thích, bạn bấm máy tính giải pt (1) cũng được