Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
rút gọn cả 3 phân thức nhé
rồi tìm điều kiện xác định
và tính giá trị để biểu thức =0 nha
mk gợi ý thế tự làm nha
k mk nhé cảm ơn
\(\frac{x^2-3x+2}{x^3-1}=\frac{x^2-2x-x+2}{\left(x-1\right).\left(x^2+x+1\right)}\)
\(=\frac{x.\left(x-2\right)-\left(x-2\right)}{\left(x-1\right).\left(x^2+x+1\right)}=\frac{\left(x-1\right).\left(x-2\right)}{\left(x-1\right).\left(x^2+x+1\right)}\)
\(=\frac{x-2}{x^2+x+1}\)
a) \(g\left(x,y\right)=x^2-10xy+9y^2=x^2-xy-9xy+9y^2\)
\(=x\left(x-y\right)-9y\left(x-y\right)=\left(x-y\right)\left(x-9y\right)\).
b )\(f\left(x,y\right)=x^6+x^4+x^2y^2+y^4-y^6\)
\(=x^6-y^6+x^4+x^2y^2+y^4\)
\(=\left(x^3\right)^2-\left(y^3\right)^2+\left(x^4+2x^2y^2+y^4\right)-x^2y^2\)
\(=\left(x^3-y^3\right)\left(x^3+y^3\right)+\left(x^2+y^2\right)^2-\left(xy\right)^2\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2-xy+y^2\right)+\left(x^2+y^2-xy\right)\left(x^2+y^2+xy\right)\)
\(=\left(x^2+xy+y^2\right)\left(x^2-xy+y^2\right)\left[\left(x-y\right)\left(x+y\right)+1\right]\)
\(=\left(x^2+xy+y^2\right)\left(x^2-2y+y^2\right)\left(x^2-y^2+1\right)\)
Vậy \(f\left(x,y\right)=\left(x^2+xy+y^2\right)\left(x^2-xy+y^2\right)\left(x^2-y^2+1\right)\)
a, Xét tử thức \(x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)\)
\(=x^2\left(y-z\right)-y^2\left(x-z\right)+z^2\left[\left(x-z\right)-\left(y-z\right)\right]\)
\(=x^2\left(y-z\right)-y^2\left(x-z\right)+z^2\left(x-z\right)-z^2\left(y-z\right)\)
\(=\left(x^2-z^2\right)\left(y-z\right)-\left(y^2-z^2\right)\left(x-z\right)\)
\(=\left(x-z\right)\left(x+z\right)\left(y-z\right)-\left(y-z\right)\left(y+z\right)\left(x-z\right)\)
\(=\left(x-z\right)\left(xy-xz+yz-z^2-y^2-yz+yz+z^2\right)\)
\(=\left(x-z\right)\left(xy-xz+yz-y^2\right)=\left(x-z\right)\left[x\left(y-z\right)-y\left(y-z\right)\right]\)
\(=\left(x-z\right)\left(x-y\right)\left(y-z\right)\)
Mẫu thức \(x^2y-x^2z+y^2z-y^3=x^2\left(y-z\right)-y^2\left(y-z\right)=\left(x-y\right)\left(x+y\right)\left(y-z\right)\)
Vậy \(\frac{x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)}{x^2y-x^2z+y^2z-y^3}=\frac{\left(x-y\right)\left(y-z\right)\left(x-z\right)}{\left(x-y\right)\left(x+y\right)\left(y-z\right)}=\frac{x-z}{x+y}\)
b, \(\frac{x^5+x+1}{x^3+x^2+x}=\frac{x^5-x^2+x^2+x+1}{x\left(x^2+x+1\right)}=\frac{x^2\left(x-1\right)\left(x^2+x+1\right)+x^2+x+1}{x\left(x^2+x+1\right)}=\frac{\left(x^2+x+1\right)\left(x^3-x^2+1\right)}{x\left(x^2+x+1\right)}=\frac{x^3-x^2+1}{x}\)
a) 10x(x-y)-6y(y-x)=10x(x-y)+6y(x-y)=(10x+6y)(x-y)
b) \(x^2-25-2xy+y^2=x^2-2xy+y^2-25=\left(x-y\right)^2-25\)
\(=\left(x-y+5\right)\left(x-y-5\right)\)
c) \(x^2-5x+5y-y^2=\left(x^2-y^2\right)-\left(5x-5y\right)\)
\(=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)=\left(x+y-5\right)\left(x-y\right)\)
d)\(x^2+4x+3=x^2+x+3x+3=x\left(x+1\right)+3\left(x+1\right)\)\(=\left(x+3\right)\left(x+1\right)\)
e)\(x^2-4x-5=x^2-5x+x-5=x\left(x-5\right)+\left(x-5\right)\)\(=\left(x+1\right)\left(x-5\right)\)
Chọn A