K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2016

ko pit

29 tháng 4 2016

Cóp trên mạng:

dap-an-bai-toan-kho-nhat-cuoc-thi-olympic-vung-vinh-2016

dap-an-bai-toan-kho-nhat-cuoc-thi-olympic-vung-vinh-2016-1

DD
10 tháng 6 2021

a) Chú ý rằng với hai người \(A\)và \(B\)thi đấu với nhau thì \(A\)thi đấu với \(B\)và \(B\)thi đấu với \(A\).

Mỗi người sẽ đấu với \(n-1\)người, nên tổng số ván đấu của giải là: 

\(\frac{n\left(n-1\right)}{2}\).

b) Giả sử \(n=12\).

Tổng số ván đấu của giải là: \(\frac{12.11}{2}=66\).

Tổng số điểm của tất cả các kì thủ là: \(2\times66=132\).

Kì thủ cuối thắng ba kì thủ đứng đầu, do đó số điểm kì thủ cuối ít nhất là \(2.3=6\).

Do số điểm các kì thủ đôi một khác nhau nên tổng số điểm tối thiểu của tất cả các kì thủ là: 

\(6+7+8+9+10+11+12+13+14+15+16+17=138>132\).

Do đó không thể xảy ra điều này. 

Ta có đpcm. 

6 tháng 11 2018

Đáp án C

Ta xét dự đoán của bạn Dung, giả sử dự đoán B nhì của Dung đúng thì dẫn đến B nhất của Trung là sai do đó D nhì của Trung là đúng (mâu thuẫn giả thiết B nhì)

Như vậy C thứ ba là đúng suy ra A nhì B nhất và D thứ tư.

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) Các đội thi đấu vòng tròn một lượt và mỗi lượt đấu sẽ có 2 đội đấu với nhau, nên số trận đấu sẽ là số cách chọn ra 2 đội từ 7 đội, mỗi cách chọn 2 đội từ 7 đội là một tổ hợp chập 2 của 7, từ đó có tất cả số trận đấu là:

\(C_7^2 = \frac{{7!}}{{2!.5!}} = 21\) (trận)

b) Mỗi khả năng ba đội được chọn đi thi đấu cấp liên trường là một tổ hợp chập 3 của 7 đội, từ đó số khả năng có thể xảy ra của 3 đội đi thi cấp liên trường là

                   \(C_7^3 = \frac{{7!}}{{3!.4!}} = 35\)

9 giờ trước (17:19)

Giải các bài toán sau bằng cách lập phương trình: BT1: Một người nông dân bán số dừa như sau: Lần thứ nhất bán 9 trái và 1/6 số dừa còn lại. Lần thứ hai bán 18 trái và 1/6 số dừa còn lại. Lần thứ ba bán 27 trái và 1/6 số dừa còn lại. Với cách bán đó thì bán lần sau cũng vừa hết số dừa. Biết rằng số dừa bán mỗi lần đều bằng nhau. Hỏi người nông dân đã bán bao nhiêu lần và số...
Đọc tiếp

Giải các bài toán sau bằng cách lập phương trình:
BT1: Một người nông dân bán số dừa như sau:
Lần thứ nhất bán 9 trái và 1/6 số dừa còn lại.
Lần thứ hai bán 18 trái và 1/6 số dừa còn lại.
Lần thứ ba bán 27 trái và 1/6 số dừa còn lại.
Với cách bán đó thì bán lần sau cũng vừa hết số dừa. Biết rằng số dừa bán mỗi lần đều bằng nhau.
Hỏi người nông dân đã bán bao nhiêu lần và số dừa đã thu hoạch là bao nhiêu?

BT2: Trong một cuộc thi đấu cờ quốc tế ở trường phổ thông, có 2 bạn học sinh lớp 7 và một số học sinh lớp 8 tham dự. Theo diều lệ cuộc thi, 2 đấu thủ bất kì đều phải đấu với nhau một trận, người thắng được 1điểm, người thua được 0 điểm, nếu hòa mỗi người được 0.5 điểm.
Hỏi có bao nhiêu bạn học sinh lớp 8 tham dự, biết tổng số điểm 2 bạn lớp 7 nhận được là 8 điểm, còn tất cả học sinh lớp 8 nhận được số điểm bằng nhau.

Giúp mình nha mai mình phải nộp rùi vui

0
HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

- Mỗi bảng 4 đội thi đấu vòng tròn, giả sử là các đội A, B, C, D

Các trận đấu là: A-B, A-C, A-D, B-C, B-D, C-D => Có tất cả 6 trận đấu

- Có 8 bảng khác nhau.

- Tổng cộng vòng bảng có số trận đấu là 6.8 = 48 (trận đấu).

AH
Akai Haruma
Giáo viên
7 tháng 8 2021

Câu 5:

D. Các vector \(\overrightarrow{AB}, \overrightarrow{BA}, \overrightarrow{AC}, \overrightarrow{CA}, \overrightarrow{BC}, \overrightarrow{CB}\)

AH
Akai Haruma
Giáo viên
7 tháng 8 2021

Câu 6: B

Câu 7: A

13 tháng 4 2020

thế có biết trả lời ko mà đi bắt bẻ

13 tháng 4 2020

Lê Tiến Đạt Chỉ biết tính trận hòa nhau thôi, cần ko?