K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2015

Ta có x2 + y2 =(x+y)2 - 2xy => 2 = 12 - 2xy => xy = -1/2

Ta lại có : x4 +y4 = (x2 +y2)2 - 2x2y2 = 22 - 2(xy)2 = ... =7/2

13 tháng 2 2018

theo đầu bài ta có\(\dfrac{x^2+y^2}{xy}=\dfrac{10}{3}\)=>\(3x^2+3y^2=10xy\)

A=\(\dfrac{x-y}{x+y}\)

=>\(A^2=\left(\dfrac{x-y}{x+y}\right)^2=\dfrac{x^2-2xy+y^2}{x^2+2xy+y^2}=\dfrac{3x^2-6xy+3y^2}{3x^2+6xy+3y^2}=\dfrac{10xy-6xy}{10xy+6xy}=\dfrac{4xy}{16xy}=\dfrac{1}{4}\)

=>A=\(\sqrt{\dfrac{1}{4}}=\dfrac{-1}{2}hoặc\sqrt{\dfrac{1}{4}}=\dfrac{1}{2}\) (cộng trừ căn 1/4 nhé)

vì y>x>0=> A=-1/2

10 tháng 12 2022

1: \(=\dfrac{x^2\cdot4xy^2}{x^2}=4xy^2\)

2: \(=\dfrac{3x\left(x-2\right)}{-\left(x-2\right)}=-3x\)

3: \(=\dfrac{\left(x-2\right)\left(x^2+2x+4\right)}{x^2+2x+4}=x-2\)

6: \(\dfrac{5\left(x-y\right)^4-3\left(x-y\right)^3+4\left(x-y\right)^2}{\left(x-y\right)^2}=5\left(x-y\right)^2-3\left(x-y\right)+4\)

 

16 tháng 10 2020

a, \(x^3-4x^2+12x-27=x^3-3x^2-x^2+3x+9x-27\)

\(=\left(x^2-x+9\right)\left(x-3\right)\)

b, \(x^4-2x^3+2x-1=x^4-x^3-x^3+x^2-x^2+x-1=\left(x^3-x^2-x+1\right)\left(x-1\right)\)

\(=\left(x-1\right)^3\left(x+1\right)\)

...

1 tháng 10 2017

Ta có : x4 - y4 

= (x2)2 - (y2)2 

= (x2 - y2)(x2 + y2)

= (x - y)(x + y)(x2 + y2)

b) 9(x - y)2 - 4(x + y)2

= [3(x - y) - 4(x + y)][3(x - y) + 4(x + y)]

= [3x - 3y - 4x - 4y][3x - 3y + 4x + 4y]

= (-x - 7y)(x + y) 

1 tháng 10 2017

e.\(x^4+2x^2+1=\left(x^2+1\right)^2\)

c.\(x^2-9y^2=\left(x-3y\right)\left(x+3y\right)\)

f.\(-x^2-2xy-y^2+1=-\left[\left(x+y\right)^2-1\right]=-\left(x+y-1\right)\left(x+y+1\right)=\left(x-y+1\right)\left(x+y+1\right)\)

g.\(x^3-x^2-x+1==x^2\left(x-1\right)-\left(x-1\right)=\left(x-1\right)\left(x^2-1\right)=\left(x-1\right)^2\left(x+1\right)\)

h.\(\left(x+y\right)^2-2\left(x+y\right)+1=\left(x+y-1\right)^2\)

i.\(\left(x+y\right)^3-x^3-y^3=\left(x+y\right)^3-\left(x^3+y^3\right)=\left(x+y\right)^3-\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=\left(x+y\right)\left[\left(x+y\right)^2-\left(x^2-xy+y^2\right)\right]=\left(x+y\right)\left(x^2+2xy+y^2-x^2+xy-y^2\right)\)

\(=3xy\left(x+y\right)\)

tíck mình nha bn thanks !!!!!

20 tháng 10 2019

2.Câu hỏi của Lãnh Hàn Thần - Toán lớp 8 - Học toán với OnlineMath