Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng HĐT :(a-b)3 =a 3-3a2b+3ab2 -b3
=> a3 -b3 = (a-b)3 +3ab(a-b)
Biến đổi vế phải: x3 -y3 = (x-y) 3 + 3xy(x-y)
= 1+3xy = Vế trái (vì x-y=1)(đpcm)
Ta có:
x3-y3=(x-y)(x2+xy+y2)
=1(x2-2xy+y2+3xy)
=(x-y)2+3xy
=1+3xy => ĐPCM
1 thằng ngu đăng bài :)
\(x^3+y^3=x^3+3xy^2+3x^2y+y^3-3xy^2-3x^2y\)
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)\)
\(\Leftrightarrow x^3+y^3+z^3=\left(x+y\right)^3-3xy\left(x+y\right)+z^3\)
chứng minh biểu thức M có giá trị không phụ thuộc x,y =)) Giúp mk vs ạ
a) \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)
\(A=x^2+2x+y^2-2y-2xy+37\)
\(A=\left(x^2-2xy+y^2\right)+\left(2x-2y\right)+37\)
\(A=\left(x-y\right)^2+2\left(x-y\right)+37\)
\(A=\left(x-y\right)^2+2\left(x-y\right)+1+36\)
\(A=\left(x-y+1\right)^2+36\)
Thay x - y = 7 vào A
\(A=\left(7+1\right)^2+36\)
\(A=8^2+36\)
\(A=64+36\)
\(A=100\)
b) \(B=x^3+x^2-y^3+y^2+xy-3x^2y+3xy^2-3xy-9\)
\(B=\left(x^3-3x^2y+3xy^2-y^3\right)+\left(x^2+xy-3xy+y^2\right)-9\)
\(B=\left(x-y\right)^3+\left(x^2-2xy+y^2\right)-9\)
\(B=\left(x-y\right)^3+\left(x-y\right)^2-9\)
Thay x - y = 7 vào B
\(B=7^3+7^2-9\)
\(B=343+49-9\)
\(B=383\)
c) \(C=x^3-x^2-y^3-y^2-3xy\left(x-y\right)+2xy\)
\(C=\left[x^3-y^3-3xy\left(x-y\right)\right]-\left(x^2-2xy+y^2\right)\)
\(C=\left(x-y\right)^3-\left(x-y\right)^2\)
Thay x - y = 7 vào C
\(C=7^3-7^2\)
\(C=343-49\)
\(C=294\)
d) \(D=x^2\left(x+1\right)-y^2\left(y-1\right)+xy-3xy\left(x-y+1\right)-95\)
\(D=x^3+x^2-y^3+y^2+xy-3x^2y+3xy^2-3xy-95\)
\(D=\left(x^3-3x^2y+3xy^2-y^3\right)+\left(x^2-2xy+y^2\right)-95\)
\(D=\left(x-y\right)^3+\left(x-y\right)^2-95\)
Thay x - y = 7 vào D
\(D=7^3+7^2-95\)
\(D=343+49-95\)
\(D=297\)
Bài 1 :
a) xy(x+y)+yz(y+z)+xz(x+z)+2xyz
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz
= xy(x + y) + yz(y + z + x) + xz(x + z + y)
= xy(x + y) + z(x + y + z)(y + x)
= (x + y)(xy + zx + zy + z²)
= (x + y)[x(y + z) + z(y + z)]
= (x + y)(y + z)(z + x)
b) \(x^3-x+3x^2y+3xy^2+y^3-x-y\)
\(=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\)
\(=\left(x+y\right)^3-\left(x+y\right)\)
\(=\left(x+y\right)\left[\left(x+y\right)^2-1\right]\)
\(=\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\)
Đã có kết quả
Bài 1,chữa phần a
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
=[xy(x+y)+xyz]+[yz(y+z)+xyz]+xz(x+z)
=xy(x+y+z)+yz(x+y+z)+xz(x+z)
=y(x+y+z)(x+z)+xz(x+z)
=(x+z)(xy+y2+yz+xz)
=(x+z)(x+y)(y+z)
Chữa phần b
x3-x+3x2y+3xy2+y3-y
=(x+y)(x+y-1)(x+y+1)
Bài2
a3+b3+c3=(a+b)3-3ab(a+b)+c3=-c3-3ab(-c)+c3=3abc
Ai làm đúng như này ớ sẽ k
Ta chứng minh đẳng thức sau :
Nếu a + b + c = 0 ⇒ a3 + b3 + c3 = 3abc
Ta có : a + b + c = 0 ⇒ a + b = -c
⇒ (a + b)3 = (-c)3 ⇒ a3 + 3a2b + 3ab2 + b3 = -c3
⇒ a3 + b3 + c3 = -3a2b - 3ab2 ⇒ a3 + b3 + c3 = -3ab(a + b)
Thay a + b = -c vào -3ab(a + b) ta được:
-3ab(a + b) = -3ab.(-c)= 3abc
Vậy nếu a + b + c = 0 thì a3 + b3 + c3 = 3abc.
Quay trở lại với bài toán, ta có:
x + y + z = -3 ⇒ x + 1 + y + 1 + z + 1 = -3 + 1 + 1 + 1
⇒ ( x + 1) + (y + 1) + (z + 1) = 0
Áp dụng đẳng thức nếu a + b + c = 0 thì a3 + b3 + c3 = 3abc vào bài toán, ta có :
(x + 1) + ( y + 1) + ( z + 1 ) = 0
⇒ ( x + 1 )3 + (y + 1 )3 + ( z + 1 )3 = 3(x + 1)(y + 1)(z + 1)
⇒ Nếu x + y + z = -3 thì :
(x + 1)3 + ( y + 1 )3 + ( z + 1 )3 = 3(x + 1)( y + 1 )(z + 1)