Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có x=\(\frac{a}{m}=\frac{2a}{2m}\) , y=\(\frac{b}{m}=\frac{2b}{2m}\)
Vì x<y nên a<b
Có a<b =>2a<a+b (1)
Có a<b =>a+b<2b (2)
Từ (1) và (2) =>2a<a+b<2b =>\(\frac{2a}{2m}< \frac{a+b}{2m}< \frac{2b}{2m}\)
=>x<y<z ( đpcm)
ta có: x<y hay \(\frac{a}{n}< \frac{b}{m}\Rightarrow a< b\)
so sánh x,y,z ta chuyển chúng cùng mẫu: 2m
\(x=\frac{a}{m}=\frac{2a}{2m}\) và \(y=\frac{b}{m}=\frac{2b}{2m}\) và \(z=\frac{\left(a+b\right)}{2m}\)
mà a<b
suy ra: a+a<b hay 2a<a+b
=> x<z (1)
mà a<b
suy ra: a+b<b+b hay a+b<2b
=> z<y (2)
từ (1) và (2) => x<z<y
vậy x<z<y
hpk tốt
Ta có:x=\(\frac{a}{m}\)<=>x=\(\frac{2a}{2m}\)
y=\(\frac{b}{m}=>y=\frac{2b}{2m}\)
z=\(\frac{\left(a+b\right)}{2m}\)
mà x<y nên a<b (với m>0)
=>a+a<a+b<b+b
hay 2a<a+b<2b
=>\(\frac{2a}{2m}<\frac{a+b}{2m}<\frac{2b}{2m}\)
=>x<z<y(ĐPCM)
giả sử x=a/m, y=b/m(a,b ,m thuộc z, m>0)và x<y. Hãy chứng tỏ rằng nếu chọn z=a+b/2m thì ta có x<z<y.
Ta có
\(x=\frac{a}{m}=\frac{2a}{2m}\) ; \(y=\frac{b}{m}=\frac{2b}{2m}\)
Vì a<b nên 2a<a+b (1)
Vì a<b nên a+b<2b (2)
Từ (1) và (2) =>2a<a+b<2b
=>\(\frac{2a}{2m}< \frac{a+b}{2m}< \frac{2b}{2m}\)
=>x<z<y ( đpcm)
Ta có:x<y
=>x+x<y+x
\(\Rightarrow\frac{2a}{m}< \frac{a+b}{m}\)
=>2a<a+b
Mà \(x=\frac{a}{m}=\frac{2a}{2m}\)
\(y=\frac{b}{m}=\frac{2b}{2m}\)
Theo giả thuyết trên:
=>2a<a+b<2b
\(\Rightarrow\frac{2a}{2m}< \frac{a+b}{2m}< \frac{2b}{2m}\)
\(\Rightarrow x< z< y\left(DPCM\right)\)