K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2017

1/2 + 1/4 + 1/8 + 1/16 + 1/32 

= 31/32

6 tháng 5 2021

1 nha bạn

19 tháng 4 2016

Tớ không biết

= kết quả là số thập phân

mình chỉ biết như vậy thôi

bạn cho mình tk nha

13 tháng 7 2018

b) ++.....+=  ++.....+= 2n-1+2n-2+2n-3+.........+2+1

    2   4          2n    2   22         2n                   2n

 Đặt A=2n-1+2n-2+2n-3+.........+2+1 

   =>2A=2n+2n-1+.......+2

   =>2A-A=2n-1

   => A =2n-1

       2n     2n

Xin lỗi nha mình ko làm được bài a)

17 tháng 2 2019

a) a = 1

    b = 2

    c = 8

Thành phân số 18/27 = 2/3

    a = 3

    b = 5

    c = 8

Thành phân số 38/57 = 2/3 .........

Mình ko làm đc bài b

4 tháng 7 2019

#)Giải :

Đặt \(A=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+...+\frac{1}{3^n}\left(n\in N\right)\)

\(\Rightarrow A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^n}\)

\(\Rightarrow3A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{n-1}}\)

\(\Rightarrow3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{n-1}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^n}\right)\)

\(\Rightarrow2A=1-\frac{1}{3^n}\)

\(\Rightarrow A=\frac{1-\frac{1}{3^n}}{2}\)

4 tháng 7 2019

S1 S2 S3 S4 A B C D

Giả sử ABCD là một hình vuông có cạnh là 1 đơn vị. Diện tích hình đó là 1.

Diện tích hình chữ nhật S1 bằng \(\frac{1}{3}\) hình vuông nên có diện tích là:

S1 = \(\frac{1}{3}\)

Chia ba phần còn lại của hình vuông ABCD, ta được hình vuông S2. Diện tích hình S2 bằng\(\frac{1}{9}\)hình vuông ABCD nên:

S2 = \(\frac{1}{9}\)

Tiếp tục chia ba phần con lại của của hình vuông ABCD, ta được hình chữ nhật S3 có diện tích:

S3 = \(\frac{1}{27}\)

Tiếp tục làm như thế và cộng lại, ta có:

S1 + S2 + S3 + S4 + S5 + S6 + ... = \(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}+...\)

Như vậy càng kéo dài tổng diện tích của các hình đó thì tổng ấy sẽ tiến dần đến diện tích hinh vuông ABCD, hay nói cách khác:

S1 + S2 + S3 + S4 + S5 + S6 + ... = SABCD

hoặc  \(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}+...\)= 1

16 tháng 7 2016

Cách 1:

B=1/2+1/4+1/8+1/16+1/32+1/64

B=1-1/2 + 1/2-1/4 + 1/4-1/8 +1/8-1/16 + 1/16-1/32 + 1/32-1/64

B=1-1/64

B=63/64

Cách 2:

B=1/2+1/4+1/8+1/16+1/32+1/64

B=1/21+1/22+1/23+1/24+1/25+1/26

2B=1+1/21+1/2^2+1/2^3+1/2^4+1/2^5

2B-B=1-1/2^6

B=1-1/64 

B=63/64

16 tháng 7 2016

Đặt A = 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64

2A = 1 + 1/2 + 1/4 + 1/8 + 1/16 + 1/32

2A - A = (1 + 1/2 + 1/4 + 1/8 + 1/16 + 1/32) - (1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64)

A = 1 - 1/64

A = 63/64

20 tháng 2 2018

     Gọi an là số hạng thứ n của dãy.

     Có: \(a_1=\frac{1}{8}=\frac{1}{2^3}=\frac{1}{2^{1+2}}\)

            \(a_2=\frac{1}{16}=\frac{1}{2^4}=\frac{1}{2^{2+2}}\)

            \(a_3=\frac{1}{32}=\frac{1}{2^5}=\frac{1}{2^{3+2}}\)

         \(\Rightarrow a_n=\frac{1}{2^{n+2}}\)

        \(\Rightarrow a_{45}=\frac{1}{2^{45+2}}=\frac{1}{2^{51}}\)

30 tháng 5 2018

\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+\frac{1}{16}-\frac{1}{32}+\frac{1}{32}-\frac{1}{64}\)

\(=1-\frac{1}{64}\)

\(=\frac{64}{64}-\frac{1}{64}\)

\(=\frac{63}{64}\)

30 tháng 5 2018

\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+\frac{1}{16}-\frac{1}{32}+\frac{1}{32}-\frac{1}{64}\)

\(=1-\frac{1}{64}\)

\(=\frac{63}{64}\)

_Chúc bạn học tốt_

3 tháng 2 2018

Đặt :

\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)

\(\Leftrightarrow\)\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}+\frac{1}{2^6}+\frac{1}{2^7}\)

\(\Leftrightarrow\)\(2A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}+\frac{1}{2^6}\)

\(\Leftrightarrow\)\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^6}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^7}\right)\)

\(\Leftrightarrow\)\(A=1-\frac{1}{2^7}\)

Vậy \(A=1-\frac{1}{2^7}\)

9 tháng 8 2018

\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+...+\frac{1}{64}-\frac{1}{128}\)

\(=1-\frac{1}{128}\)

\(=\frac{127}{128}\)

21 tháng 5 2017

A = 1 - 1/64 = 63/64 

tk nha