K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2016

ta co: 2n-3 chia het cho n+1

n+1 chia het cho n+1

=>2(n+1) chia het cho n+1

hay 2n+2 chia het cho n+1

=>(2n+2)-(2n-3) chia het cho n-1

         5 chia het cho n-1

=> n-1 thuoc uoc cua 5  ={1;5;-1;-5}

=> n thuoc{2;6;0;-4}

sai rồi đoạn cuối là n+1 chứ
 

24 tháng 11 2016

b)

a=3n+1+3n-1=3n(3+1)-1=3n*4-1

Để a chia hết cho 7 thì aEB(7)={1;7;14;28;35;...}

=>{3n*4}E{2;8;15;29;36;...}

=>3nE{9;...} => nE{3;...}

b=2*3n+1-3n+1=3n*(6-1)+1=3n*5+1

Để b chia hết cho 7 thì bEB(7)={1;7;14;28;35;...}

=>{3N*5}E{0;6;13;27;34;...}

=>3NE{0;...}

=>NE{0;...}

=>đpcm(cj ko chắc cách cm này)

8 tháng 1 2018

a) 9.10n + 18 = 9(10n + 2) \(⋮\) 9

Mặt khác: 9(10n + 2) = 3.3(10n + 2)\(⋮\) 3

=> 9.10n + 18 \(⋮\) 9.3

=> 9.10n + 18 \(⋮\) 27.

b) 92n + 14 = 81n + 14.

Vì 81n có chữ số tận cùng là 1 nên 81n + 14 có chữ số tận cùng là 5.

=> 81n + 14 \(⋮\) 5

=> 92n + 14 \(⋮\) 5

21 tháng 1 2018

Bài 1 : 

Có : P = n^2+n+2 = n.(n+1)+2

Ta thấy n và n+1 là 2 số tự nhiên liên tiếp

=> n.(n+1) có tận cùng là : 0 hoặc 2 hoặc 6

=> P có tận cùng là : 2 hoặc 4 hoặc 8 

=> P ko chia hết cho 5

=> ĐPCM

Tk mk nha

21 tháng 1 2018

Bài 2 : 

Xét : A = a/3 + a^2/2 + a^3/6 = 2a^2+3a+a^3/6 = a.(a^2+2a+3)/6

= a.(a+1).(a+2)/6

Ta thấy a;a+1;a+2 là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 và 1 số chia hết cho 3

=> a.(a+1).(a+2) chia hết cho 2 và 3

=> a.(a+1).(a+2) chia hết cho 6

=> A thuộc Z

Tk mk nha

15 tháng 7 2016

\(A=1^n+2^n+3^n+4^n\)

n không chia hết cho 4 thì n chỉ có thể có các số dư: 1; 2; 3 khi chia cho 4.

Ta lập bảng chữ số tận cùng

nn=4k+1n=4k+2n=4k+3
1n111
2n...2...4...8
3n...3...9...7
4n...4...6...4
A=1n+2n+3n+4n...0...0...0

A luôn có tận cùng là 0 nên A chia hết cho 10 => A chia hết cho 5 - đpcm