Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(\frac{a-2ab-b}{2a+3ab-2b}=\frac{\frac{1}{b}-2-\frac{1}{a}}{\frac{2}{b}+3-\frac{2}{a}}=\frac{-1-2}{3-2}=-3\)
\(\frac{1}{a}-\frac{1}{b}=1\Rightarrow b-a=ab\)
\(P=\frac{-\left(b-a\right)-2ab}{-2\left(b-a\right)+3ab}=\frac{-3ab}{ab}=-3\)
Biết \(\frac{1}{a}-\frac{1}{b}=1\) và \(a,b\ne0;2a+3ab-2b\ne0.\)
tính \(Q=\frac{a-2ab-b}{2a+3ab-2b}\)
Theo mình thì \(\frac{1}{a}\)- \(\frac{1}{b}\)=1 không thể xảy ra vì 1/a - 1/b =1 => (b-a)/(ab)=1
hay b-a=a.b <=> a=b=0 (trái với đề bài)
a/ \(\Leftrightarrow x\left(8x^3+12x^2+6x+1\right)=0\Leftrightarrow x\left[\left(2x\right)^3+3.\left(2x\right)^2.1+3.2x.1+1\right]=0\)
\(\Leftrightarrow x\left(2x+1\right)^3=0\Rightarrow\orbr{\begin{cases}x=0\\\left(2x+1\right)^3=0\Leftrightarrow2x+1=0\Leftrightarrow x=-\frac{1}{2}\end{cases}}\)
b/ \(\Leftrightarrow4x^2-\left(4x^2-9\right)=9x\Leftrightarrow9x=9\Leftrightarrow x=1\)
c/ Từ \(\frac{1}{a}-\frac{1}{b}=1\Rightarrow a-b=-ab\) thay vào biểu thức
\(\Rightarrow\frac{-ab-2ab}{-2ab+3ab}=\frac{-3ab}{ab}=-3\)
\(\frac{1}{a}-\frac{1}{b}=1\Rightarrow\frac{1}{a}=\frac{b+1}{b}\Rightarrow a=\frac{b}{b+1}\\
\)thế vào P ta có:
\(P=\frac{\frac{b}{b+1}-\frac{2b^2}{b+1}-b}{\frac{2b}{b+1}+\frac{3b^2}{b+1}-2b}=\frac{\frac{b-2b^2-b\left(b+1\right)}{b+1}}{\frac{2b+3b^2-2b\left(b+1\right)}{b+1}}=\frac{b-2b^2-b^2-b}{2b+3b^2-2b^2-2b}=\frac{-3b^2}{b^2}=-3\)
1/a - 1/b = 1
<=> 1/a = 1 + 1/b = b+1/b
<=> a = b/b+1
Thay vào P ta được:
\(P=\frac{\frac{b}{b+1}-2.\frac{b}{b+1}.b-b}{2.\frac{b}{b+1}+3.\frac{b}{b+1}.b-2b}\)\(=\frac{b.\left(\frac{1}{b+1}-\frac{2b}{b+1}-\frac{b+1}{b+1}\right)}{b.\left(\frac{2}{b+1}+\frac{3b}{b+1}-\frac{2b+2}{b+1}\right)}\)= -3
\(a^2-3ab+2b^2=0\)
\(\Leftrightarrow a^2-2ab-ab+2b^2=0\)
\(\Leftrightarrow a\left(a-2b\right)-b\left(a-2b\right)=0\)
\(\Leftrightarrow\left(a-2b\right)\left(a-b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=2b\\a=b\end{cases}}\)
+ ) TH1 :
\(a=2b\)
\(P=\frac{a+2b}{3a}+\frac{b+2a}{3b}\)
\(P=\frac{2b+2b}{6b}+\frac{b+4b}{3b}\)
\(P=\frac{4b}{6b}+\frac{5b}{3b}\)
\(P=\frac{4}{6}+\frac{5}{3}=\frac{7}{3}\)
+ ) TH 2 \(a=b\)
\(P=\frac{a+2b}{3a}+\frac{b+2a}{3b}\)
\(P=\frac{3a}{3a}+\frac{3b}{3b}=1+1=2\)
Chúc bạn học tốt !!!