K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2017

Muốn chứng minh đường thẳng a // (P), ta chứng minh đường thẳng a song song với đường thẳng b mà đường thẳng b song song với mặt phẳng (P) (a và (P) không có điểm chung)

30 tháng 9 2018

Chứng minh đường thẳng song song với mặt phẳng

- Chứng minh d song song với đường thẳng d’ nằm trong (α) và d không thuộc(α).

- Có hai mặt phẳng song song, bất kì đường nào nằm trong hai mặt phẳng này cũng song song với mặt phẳng kia.

7 tháng 6 2017

- Hai đường thẳng gọi là song song nếu chúng đồng phẳng và không có điểm chung.
- Một đường thẳng và một mặt phẳng gọi là song song với nhau nếu chúng không có điểm chung.
- Hai mặt phẳng gọi là song song nếu chúng không có điểm chung.

22 tháng 7 2017

- Đường thẳng song song với đường thẳng nếu chúng không có điểm chung và chúng cùng nằm trên cùng mặt phẳng.

- Đường thẳng song song với mặt phẳng nếu chúng không có điểm chung.

- Mặt phẳng song song với mặt phẳng nếu chúng không có điểm chung.

Ta có (P) // (Q)

Suy ra AA’ // BB’ (1)

Ta có a // b

Suy ra AB // A’B’ (2)

Từ (1) và (2) suy ra AA’B’B là hình bình hành

Do đó AB = A’B’

21 tháng 1 2019

Đáp án B.

Theo định lý, nếu mặt phẳng (P) chứa hai đường thẳng cắt nhau và cùng song song với mặt phẳng (Q) thì (P) song song với (Q), do đó nếu lấy mọi đường thẳng nằm trong mặt phẳng (P) thì tồn tại hai đường thẳng cắt nhau thỏa mãn định lý, vậy phát biểu (2) đúng.

Phát biểu (1) sai vì hai đường thẳng đó có thể chéo nhau.

Chọn đáp án B

Số phát biểu đúng 1.     Trong không gian qua 1 điểm không nằm trên đường thẳng cho trước, có một và chỉ một đường thẳng song song với đường thẳng đã cho 2.     Nếu 3 mặt phẳng đôi một cắt nhau theo 3 giao tuyến phân biệt thì 3 giao tuyến ấy đồng quy 3.     Nếu 2 mặt phẳng phân biệt lần lượt chứa 2 đường thẳng song song thì giao tuyến của chúng ( nếu có ) cũng song song với 2...
Đọc tiếp

Số phát biểu đúng

1.     Trong không gian qua 1 điểm không nằm trên đường thẳng cho trước, có một và chỉ một đường thẳng song song với đường thẳng đã cho

2.     Nếu 3 mặt phẳng đôi một cắt nhau theo 3 giao tuyến phân biệt thì 3 giao tuyến ấy đồng quy

3.     Nếu 2 mặt phẳng phân biệt lần lượt chứa 2 đường thẳng song song thì giao tuyến của chúng ( nếu có ) cũng song song với 2 đường thẳng đó hoặc trùng với một trong 2 đường thẳng đó

4.     2 đường thẳng phân biệt cùng song song với đường thẳng thứ 3 thì chúng song song với nhau

5.     Nếu đường thẳng d không nằm trong mặt phẳng ( ) và d song song với đường thẳng d’ nằm trong ( ) thì d song song với ( )

6.     Cho đường thẳng a song song với mặt phẳng . Nếu mặt phẳng  chứa a và cắt  theo giao tuyến b thì b song song với a

7.     Nếu 2 mặt phẳng cùng song song với 1 đường thẳng thì giao tuyến của chúng ( nếu có ) cũng song song với đường thẳng đó

     8. Cho 2 đường thẳng chéo nhau. Có vô số mặt phẳng chứa đường thẳng này và song song với đường thẳng kia.

A. 8

B. 7

C. 6

D. 5

1
5 tháng 2 2018

Đáp án C

2. Nếu 3 mặt phẳng đôi một cắt nhau theo 3 giao tuyến phân biệt thì 3 giao tuyến ấy hoặc đồng quy, hoặc đôi một song song với nhau

8. Cho 2 đường thẳng chéo nhau. Có duy nhất một mặt phẳng chứa đường thẳng này và song song với đường thẳng kia

31 tháng 3 2017

a) Đúng

b) Đúng

c) Sai (vì a có thể nằm trong mp(α), xem hình vẽ)

d) Sai, chẳng hạn hai mặt phẳng (α) và (β) cùng đi qua đường thẳng a và a ⊥ mp(P) nên (α) và (β) cùng vuông góc với mp(P) nhưng (α) và (β) cắt nhau.

29 tháng 9 2018

a) Đúng

b) Đúng

c) Sai (vì a có thể nằm trong mp(α), xem hình vẽ)

d) Sai, chẳng hạn hai mặt phẳng (α) và (β) cùng đi qua đường thẳng a và a ⊥ mp(P) nên (α) và (β) cùng vuông góc với mp(P) nhưng (α) và (β) cắt nhau.

e) Sai, chẳng hạn a và b cùng ở trong mp(P) và mp(P) ⊥ d. Lúc đó a và b cùng vuông góc với d nhưng a và b có thể không song song nhau.