Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hai tam giác trên có các cạnh tương ứng bằng nhau
có các góc tương ứng bằng nhau
Tam giác ABC và A'B'C' có:
AB = A'B' = 2cm
BC = B'C' = 4 cm
AC = A'C' = 3 cm
=> Tam giác ABC = tam giác A'B'C' (c.c.c)
=> góc A = góc A'
góc B = góc B'
góc C = góc C'
a: Do AC > A'C' nên lấy được điểm C1 trên cạnh AC sao cho AC1=A′C′.
Ta có ΔABC1=ΔA'B'C'
Suy ra B′C′=BC1
Mặt khác hai đường xiên BC và BC1 kẻ từ B đến đường thẳng AC lần lượt có hình chiếu trên AC là AC và AC1.
Vì AC > AC1 nên BC > BC1.
Suy ra BC > B'C'.
b:
-Giả sử AC<A'C'.
Khi đó theo chứng minh câu a) ta có BC < B'C'. Điều này không đúng với giả thiết BC > B'C'.
Giả sử AC=A'C'. Khi đó ta có ΔABC=ΔA'B'C' (c.g.c).
Suy ra BC=B'C'.
Điều này cũng không đúng với giả thiết BC>B'C'. Vậy ta phải có AC>A'C'.
ta có BAC+B'A'C'=180
nên BAC=B'A'C'=180/2=90
nên tam giac1 ABC và tam giác A'B'C' là 2 tam giác vuông
mà AM là đường trung tuyến của tam giác ABC
nên AM=1/2BC
xét tam giac1 ABC và tam giác A'B'C' có
BAC=B'A'C'(gt)
AC=A'C'(gt)
AB=A'B'(gt)
nên tam giac1 ABC = tam giác A'B'C'
nên BC=B'C'
mà AM=1/2 BC
nên AM=1/2 B'C'