K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2016

a = (76 + 38) : 2=  57

b = 76 - 57 = 19

a : b = 57 : 19 = 3 

10 tháng 1 2016

a là: (76+38)/2=57

b là: 57-38=19

Vậy a chia b là: 57/19=3

A là ( 76 + 38 ) : 2 = 57

B là 57 - 38 = 19

A : B là 57 : 19 = 3

12 tháng 10 2015

A + B = 76 
A - B = 38 

JUST ADD 

2A = 114 

A = 57 
B = 19 

A / B = 57/19 = 3 ANSWER

20 tháng 7 2018

Quá EZ bạn ơi!

A + B = 76

A - B = 38

=> A + B - ( A - B ) = 76 - 38

=> 2B = 38

=> B = 19

=> A = 76 - 19  = 57

A : B  = 57 : 19 = 3

A . B = 57 . 19 = 1083

Đó! EZ!

20 tháng 7 2018

A là:(76+38):2=57

B là:57-38=19

A:B là 57:19=3

AxB là:57x19=1083

Dễ thế này mà bảo toán lơp 9,học sinh lớp 3 nó cũng giải được!

Ta có:P=(a+b)(a+c)(b+c)-abc=(a2b+ab2+b2c+bc2+a2c+ac2+abc+abc)-abc

                                          =(a2b+ab2+abc)+(a2c+ac2+abc)+(b2c+bc2+abc)-2abc

                                          =ab(a+b+c)+ac(a+b+c)+bc(a+b+c)-2abc

                                          =(a+b+c)(ab+ac+bc)-2abc

 thấy a+b+c chia hết cho 4 => (a+b+c)(ab+bc+ac) chia hết cho 4   (1)

Do a+b+c chia hết cho 4 => tồn tại ít nhất trong 3 số a,b,c một số chia hết cho 2=>2abc chia hết cho 4   (2)

Tù (1) và (2)=>P chia hết cho 4

Ta có:P=(a+b)(a+c)(b+c)-abc=(a2b+ab2+b2c+bc2+a2c+ac2+abc+abc)-abc

                                          =(a2b+ab2+abc)+(a2c+ac2+abc)+(b2c+bc2+abc)-2abc

                                          =ab(a+b+c)+ac(a+b+c)+bc(a+b+c)-2abc

                                          =(a+b+c)(ab+ac+bc)-2abc

 thấy a+b+c chia hết cho 4 => (a+b+c)(ab+bc+ac) chia hết cho 4   (1)

Do a+b+c chia hết cho 4 => tồn tại ít nhất trong 3 số a,b,c một số chia hết cho 2=>2abc chia hết cho 4   (2)

Tù (1) và (2)=>P chia hết cho 4

6 tháng 10 2018

Giả sử a+b không chia hết cho 5

Suy ra:

\(\left(a+b\right)^5\)không chia hết cho 5

\(\Leftrightarrow a^5+b^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4\)không chia hết cho 5

\(\Leftrightarrow\left(a^5+b^5\right)+5\cdot A\)không chia hết cho 5

\(\Leftrightarrow a^5+b^5\)không chia hết cho 5

Phản giả thiết

Vậy ......

Nếu không sử dụng phản chứng ta có thể chứng minh bằng pp khai triển giả thiết

\(a^5+b^5=\left(a+b\right)\left(a^4+a^3b+a^2b^2+ab^3+b^4\right)⋮5\)

Suy ra: \(\left(a+b\right)⋮5\)

Cũng có thể giải bằng quy nạp toán học

25 tháng 1 2018

Có : A = a^2b+ab^2+b^2c+bc^2+c^2a+ca^2+2abc-abc

= a^2b+ab^2+b^2c+bc^2+c^2a+ca^2+abc

= (a^2b+ab^2+abc)+(b^2c+bc^2+abc)+(c^2a+ca^2+abc)-2abc

= (a+b+c).(ab+bc+ca)-2abc

Vì a+b+c chia hết cho 4 => (a+b+c).(ab+bc+Ca) chia hết cho 4 và a+b+c chẵn

a+b+c chẵn => trong 3 số a,b,c có 1 nhất 1 số chẵn vì nếu cả 3 số đều lẻ thì a+b+c lẻ

=> abc chia hết chi 2 => 2abc chia hết cho 4

=> A chia hết cho 4

=> ĐPCM

Tk mk nha

28 tháng 2 2018

thanks bạn nha :v

Ta có:P=(a+b)(a+c)(b+c)-abc=(a2b+ab2+b2c+bc2+a2c+ac2+abc+abc)-abc

                                          =(a2b+ab2+abc)+(a2c+ac2+abc)+(b2c+bc2+abc)-2abc

                                          =ab(a+b+c)+ac(a+b+c)+bc(a+b+c)-2abc

                                          =(a+b+c)(ab+ac+bc)-2abc

 thấy a+b+c chia hết cho 4 => (a+b+c)(ab+bc+ac) chia hết cho 4   (1)

Do a+b+c chia hết cho 4 => tồn tại ít nhất trong 3 số a,b,c một số chia hết cho 2=>2abc chia hết cho 4   (2)

Tù (1) và (2)=>P chia hết cho 4

Ta có:P=(a+b)(a+c)(b+c)-abc=(a2b+ab2+b2c+bc2+a2c+ac2+abc+abc)-abc

                                          =(a2b+ab2+abc)+(a2c+ac2+abc)+(b2c+bc2+abc)-2abc

                                          =ab(a+b+c)+ac(a+b+c)+bc(a+b+c)-2abc

                                          =(a+b+c)(ab+ac+bc)-2abc

 thấy a+b+c chia hết cho 4 => (a+b+c)(ab+bc+ac) chia hết cho 4   (1)

Do a+b+c chia hết cho 4 => tồn tại ít nhất trong 3 số a,b,c một số chia hết cho 2=>2abc chia hết cho 4   (2)

Tù (1) và (2)=>P chia hết cho 4