K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(=n\left[n^2\left(n^2-7\right)^2-36\right]\)

\(=n\left[n^3-7n-6\right]\left[n^3-7n+6\right]\)

\(=n\left(n-3\right)\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n-2\right)\left(n-1\right)\)

Vì đây là 7 số liên tiếp

nên A chia hết cho 7!

=>A chia hết cho 5040

4 tháng 10 2018

Thời gian có hạn copy cái này hộ mình vào google xem nha :

https://lazi.vn/quiz/d/16491/nhac-edm-la-loai-nhac-the-loai-gi

Vào xem xong các bạn nhận được 1 thẻ cào mệnh giá 100k nhận thưởng bằng cách nhắn tin vs mình và 1 phần thưởng bí mật là chiếc áo đá bóng,....

Có 500 giải nhanh nha đã có 200 người nhận rồi 

OKmm

4 tháng 10 2018

n3(n2 - 7)2 - 36n

= n[n2(n2 - 7)2 - 36]

= n[(n3 - 7n)2 - 62]

= n(n3 - 7n - 6)(n3 - 7n + 6)

= n(n3 - n - 6n - 6)(n3 - n - 6n + 6)

= n[n(n2 - 1) - 6(n + 1)][n(n2 - 1) - 6(n - 1)]

= n[n(n - 1)(n + 1) - 6(n + 1)][(n(n - 1)(n + 1) - 6(n - 1)]

= n(n + 1)[n(n - 1) - 6](n - 1)[n(n + 1)  - 6]

= n(n + 1)(n2 - n - 6)(n - 1)(n2 + n  - 6]

= n(n + 1)(n2 - 3n + 2n - 6)(n - 1)(n2 + 3n - 2n - 6)

= n(n + 1)[n(n - 3) + 2(n - 3)](n - 1)[n(n + 3) - 2(n + 3)]

= n(n + 1)(n + 2)(n - 3)(n - 1)(n - 2)(n + 3)

Đây là tích của bảy số nguyên liên tiếp. Trong bày số nguyên liên tiếp:

- Tồn tại một bội số của 5 (nên A chia hết cho 5)

- Tồn tại một bội số của 7 (nên A chia hết cho 7)

- Tồn tại hai bội số của 3 (nên A chia hết cho 9)

- Tồn tại 3 bội số của 2, trong đó có một bội số của 4 (nên A chia hết cho 16)

A chia hết cho các số 5, 7, 9, 16 từng đôi một nguyên tố cùng nhau nên A chia hết cho 5.7.9.16 = 5040 (đpcm)

17 tháng 6 2018

Xét \(5040=2^4.3^2.5.7\)

Phân tích:

\(A=n\left[n^2\left(n^2-7\right)^2-36\right]=n\left[\left(n^2-7n\right)^2-6^2\right]\)

\(=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)

Ta có:

\(n^3-7n-6=\left(n+1\right)\left(n+2\right)\left(n-3\right)\)

\(n^3-7n+6=\left(n-1\right)\left(n-2\right)\left(n+3\right)\)

Do đó \(A=\left(n-3\right)\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)

Đây là tích 7 số nguyên liên tiếp. Trong 7 số nguyên liên tiếp:

- Tồn tại 1 bội số của 5 (nên A chia hết cho 5)

- Tồn tại 1 bội số của 7 (nên A chia hết cho 7)

- Tồn tại 2 bội số của 3 (nên A chia hết cho 9)

- Tồn tại 3 bội số của 2, trong đó có 1 bội số của 4 (nên A chia hết cho 16)

A chia hết cho các số 5, 7, 9, 16 đôi một nguyên tố cùng nhau nên A chia hết cho 5.7.9.16 = 5040

4 tháng 8 2016

a, n3 + 5

= n3 - n + 6n

= n.(n2 - 1) + 6n

= n.(n - 1).(n + 1) + 6n

Vì n.(n - 1).(n + 1) là tích 3 số tự nhiên liên tiếp => n.(n - 1).(n + 1) chia hết cho 2 và 3

Mà (2,3)=1 => n.(n - 1).(n + 1) chia hết cho 6, 6n chia hết cho 6

=> n3 + 5n chia hết cho 6 ( đpcm)

4 tháng 8 2016

a, n3 + 5

= n3 - n + 6n

= n.(n2 - 1) + 6n

= n.(n - 1).(n + 1) + 6n

Vì n.(n - 1).(n + 1) là tích 3 số tự nhiên liên tiếp => n.(n - 1).(n + 1) chia hết cho 2 và 3

Mà (2,3)=1 => n.(n - 1).(n + 1) chia hết cho 6, 6n chia hết cho 6

=> n3 + 5n chia hết cho 6 ( đpcm)

1 tháng 6 2018

b) Phân tích ra thừa số : 5040 = 24 . 32 . 5 . 7

Phân tích : A = n . [ n2 . ( n2 - 7 )2 - 36 ] = n . [ ( n3 - 7n )2 - 62 ]

= n . ( n3 - 7n - 6 ) . ( n3 - 7n + 6 )

Ta lại có : n3 - 7n - 6 = ( n + 1 ) ( n + 2 ) ( n - 3 )

 n3 - 7n + 6 = ( n - 1 ) ( n - 2 ) ( n + 3 )

Do đó : A = ( n - 3 ) ( n - 2 ) ( n - 1 ) n ( n + 1 ) ( n + 2 ) ( n + 3 )

Ta thấy A là tích của 7 số nguyên liên tiếp nên :

- tồn tại 1 bội số của 5 ( nên A chia hết cho 5 )

- tồn tại 1 bội số của 7 ( nên A chia hết cho 7 )

- tồn tại 2 bội số của 3 ( nên A chia hết cho 9 )

- tồn tại 3 bội số của 2, trong đó có 1 bội số của 4 ( nên A chia hết cho 16 )

A chia hết cho các số 5,7,9,16 đôi một nguyên tố cùng nhau nên A chia hết cho 5.7.9.16 = 5040

6 tháng 6 2017

a,\(5n^3+15n^2+10n=5n\left(n^2+3n^2+2\right)=5n\left(n^2+n+2n+2\right)=5n\left(n+1\right)\left(n+2\right)\)Nhận thấy 5n(n+1)(n+2)\(⋮5\)\(5⋮5\) (1)

\(n\left(n+1\right)\left(n+2\right)⋮6\) vì n(n+1)(n+2) là ba số tự nhiên liên tiếp (2)

Từ (1)và(2)\(\Rightarrow5n\left(n+1\right)\left(n+2\right)⋮30\Rightarrowđpcm\)

b, \(n^3\left(n^2-7\right)-36n\)

\(=n\left[\left(n^2\right)\left(n^2-7\right)^2-36\right]\)

\(=n\left[\left(n^3-7n\right)^2-36\right]\)

\(=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)

\(=\left(n-3\right)\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮3,5,7\Rightarrow⋮105\Rightarrowđpcm\)

6 tháng 6 2017

Bn Mai Xuân Phong ơi!Câu a, 5x3hay là 5n3 vậy?

\(=n\cdot\left[n^2\left(n^2-7\right)^2-36\right]\)

\(=n\left[\left(n^3-7n\right)^2-36\right]\)

\(=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)

\(=n\left(n^3-n-6n-6\right)\left(n^3-n-6n+6\right)\)

\(=n\left[n\left(n-1\right)\left(n+1\right)-6\left(n+1\right)\right]\left[n\left(n-1\right)\left(n+1\right)-6\left(n-1\right)\right]\)

\(=n\left(n+1\right)\left(n-3\right)\left(n+2\right)\cdot\left(n-1\right)\left(n+3\right)\left(n-2\right)\)

Vì đây là tích của 7 số nguyên liên tiếp 

nên \(A⋮7!=5040\)

hay \(A⋮105\)

Ta có : \(n^3\left(n^2-7\right)^2-36n\)

\(=n[\left(n^3-7n\right)^2-36]\)

\(=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)

\(=n[\left(n-3\right)\left(n^2+3n+2\right)][\left(n+3\right)\left(n^2-3n+2\right)]\)

\(=n\left(n-3\right)\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n-1\right)\left(n-2\right)\)

là tích của 7 số nguyên liên tiếp 

\(\Rightarrow n\left(n-3\right)\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n-1\right)\left(n-2\right)⋮7\)

hay \(n^3\left(n^2-7\right)^2-36n⋮7\forall n\inℤ\)