Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thời gian có hạn copy cái này hộ mình vào google xem nha :
https://lazi.vn/quiz/d/16491/nhac-edm-la-loai-nhac-the-loai-gi
Vào xem xong các bạn nhận được 1 thẻ cào mệnh giá 100k nhận thưởng bằng cách nhắn tin vs mình và 1 phần thưởng bí mật là chiếc áo đá bóng,....
Có 500 giải nhanh nha đã có 200 người nhận rồi
OKmm
n3(n2 - 7)2 - 36n
= n[n2(n2 - 7)2 - 36]
= n[(n3 - 7n)2 - 62]
= n(n3 - 7n - 6)(n3 - 7n + 6)
= n(n3 - n - 6n - 6)(n3 - n - 6n + 6)
= n[n(n2 - 1) - 6(n + 1)][n(n2 - 1) - 6(n - 1)]
= n[n(n - 1)(n + 1) - 6(n + 1)][(n(n - 1)(n + 1) - 6(n - 1)]
= n(n + 1)[n(n - 1) - 6](n - 1)[n(n + 1) - 6]
= n(n + 1)(n2 - n - 6)(n - 1)(n2 + n - 6]
= n(n + 1)(n2 - 3n + 2n - 6)(n - 1)(n2 + 3n - 2n - 6)
= n(n + 1)[n(n - 3) + 2(n - 3)](n - 1)[n(n + 3) - 2(n + 3)]
= n(n + 1)(n + 2)(n - 3)(n - 1)(n - 2)(n + 3)
Đây là tích của bảy số nguyên liên tiếp. Trong bày số nguyên liên tiếp:
- Tồn tại một bội số của 5 (nên A chia hết cho 5)
- Tồn tại một bội số của 7 (nên A chia hết cho 7)
- Tồn tại hai bội số của 3 (nên A chia hết cho 9)
- Tồn tại 3 bội số của 2, trong đó có một bội số của 4 (nên A chia hết cho 16)
A chia hết cho các số 5, 7, 9, 16 từng đôi một nguyên tố cùng nhau nên A chia hết cho 5.7.9.16 = 5040 (đpcm)
Xét \(5040=2^4.3^2.5.7\)
Phân tích:
\(A=n\left[n^2\left(n^2-7\right)^2-36\right]=n\left[\left(n^2-7n\right)^2-6^2\right]\)
\(=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)
Ta có:
\(n^3-7n-6=\left(n+1\right)\left(n+2\right)\left(n-3\right)\)
\(n^3-7n+6=\left(n-1\right)\left(n-2\right)\left(n+3\right)\)
Do đó \(A=\left(n-3\right)\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
Đây là tích 7 số nguyên liên tiếp. Trong 7 số nguyên liên tiếp:
- Tồn tại 1 bội số của 5 (nên A chia hết cho 5)
- Tồn tại 1 bội số của 7 (nên A chia hết cho 7)
- Tồn tại 2 bội số của 3 (nên A chia hết cho 9)
- Tồn tại 3 bội số của 2, trong đó có 1 bội số của 4 (nên A chia hết cho 16)
A chia hết cho các số 5, 7, 9, 16 đôi một nguyên tố cùng nhau nên A chia hết cho 5.7.9.16 = 5040
a, n3 + 5
= n3 - n + 6n
= n.(n2 - 1) + 6n
= n.(n - 1).(n + 1) + 6n
Vì n.(n - 1).(n + 1) là tích 3 số tự nhiên liên tiếp => n.(n - 1).(n + 1) chia hết cho 2 và 3
Mà (2,3)=1 => n.(n - 1).(n + 1) chia hết cho 6, 6n chia hết cho 6
=> n3 + 5n chia hết cho 6 ( đpcm)
a, n3 + 5
= n3 - n + 6n
= n.(n2 - 1) + 6n
= n.(n - 1).(n + 1) + 6n
Vì n.(n - 1).(n + 1) là tích 3 số tự nhiên liên tiếp => n.(n - 1).(n + 1) chia hết cho 2 và 3
Mà (2,3)=1 => n.(n - 1).(n + 1) chia hết cho 6, 6n chia hết cho 6
=> n3 + 5n chia hết cho 6 ( đpcm)
b) Phân tích ra thừa số : 5040 = 24 . 32 . 5 . 7
Phân tích : A = n . [ n2 . ( n2 - 7 )2 - 36 ] = n . [ ( n3 - 7n )2 - 62 ]
= n . ( n3 - 7n - 6 ) . ( n3 - 7n + 6 )
Ta lại có : n3 - 7n - 6 = ( n + 1 ) ( n + 2 ) ( n - 3 )
n3 - 7n + 6 = ( n - 1 ) ( n - 2 ) ( n + 3 )
Do đó : A = ( n - 3 ) ( n - 2 ) ( n - 1 ) n ( n + 1 ) ( n + 2 ) ( n + 3 )
Ta thấy A là tích của 7 số nguyên liên tiếp nên :
- tồn tại 1 bội số của 5 ( nên A chia hết cho 5 )
- tồn tại 1 bội số của 7 ( nên A chia hết cho 7 )
- tồn tại 2 bội số của 3 ( nên A chia hết cho 9 )
- tồn tại 3 bội số của 2, trong đó có 1 bội số của 4 ( nên A chia hết cho 16 )
A chia hết cho các số 5,7,9,16 đôi một nguyên tố cùng nhau nên A chia hết cho 5.7.9.16 = 5040
a,\(5n^3+15n^2+10n=5n\left(n^2+3n^2+2\right)=5n\left(n^2+n+2n+2\right)=5n\left(n+1\right)\left(n+2\right)\)Nhận thấy 5n(n+1)(n+2)\(⋮5\) vì \(5⋮5\) (1)
và \(n\left(n+1\right)\left(n+2\right)⋮6\) vì n(n+1)(n+2) là ba số tự nhiên liên tiếp (2)
Từ (1)và(2)\(\Rightarrow5n\left(n+1\right)\left(n+2\right)⋮30\Rightarrowđpcm\)
b, \(n^3\left(n^2-7\right)-36n\)
\(=n\left[\left(n^2\right)\left(n^2-7\right)^2-36\right]\)
\(=n\left[\left(n^3-7n\right)^2-36\right]\)
\(=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)
\(=\left(n-3\right)\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮3,5,7\Rightarrow⋮105\Rightarrowđpcm\)
\(=n\cdot\left[n^2\left(n^2-7\right)^2-36\right]\)
\(=n\left[\left(n^3-7n\right)^2-36\right]\)
\(=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)
\(=n\left(n^3-n-6n-6\right)\left(n^3-n-6n+6\right)\)
\(=n\left[n\left(n-1\right)\left(n+1\right)-6\left(n+1\right)\right]\left[n\left(n-1\right)\left(n+1\right)-6\left(n-1\right)\right]\)
\(=n\left(n+1\right)\left(n-3\right)\left(n+2\right)\cdot\left(n-1\right)\left(n+3\right)\left(n-2\right)\)
Vì đây là tích của 7 số nguyên liên tiếp
nên \(A⋮7!=5040\)
hay \(A⋮105\)
Ta có : \(n^3\left(n^2-7\right)^2-36n\)
\(=n[\left(n^3-7n\right)^2-36]\)
\(=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)
\(=n[\left(n-3\right)\left(n^2+3n+2\right)][\left(n+3\right)\left(n^2-3n+2\right)]\)
\(=n\left(n-3\right)\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n-1\right)\left(n-2\right)\)
là tích của 7 số nguyên liên tiếp
\(\Rightarrow n\left(n-3\right)\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n-1\right)\left(n-2\right)⋮7\)
hay \(n^3\left(n^2-7\right)^2-36n⋮7\forall n\inℤ\)
\(=n\left[n^2\left(n^2-7\right)^2-36\right]\)
\(=n\left[n^3-7n-6\right]\left[n^3-7n+6\right]\)
\(=n\left(n-3\right)\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n-2\right)\left(n-1\right)\)
Vì đây là 7 số liên tiếp
nên A chia hết cho 7!
=>A chia hết cho 5040