Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta phân tích biểu thức đã cho ra nhân tử :
A=n4−4n3−4n2+16nA=n4−4n3−4n2+16n
=[n4−4n3]−[4n2−16n]=n3(n−4)−4n(n−4)=[n4−4n3]−[4n2−16n]=n3(n−4)−4n(n−4)
=n(n−4)[n2−4]=n(n−2)(n+2)(n−4)=n(n−4)[n2−4]=n(n−2)(n+2)(n−4)
Vì n chẵn và lớn hơn 4 nên ta đặt n = 2k + 2 , trong đó k > 1 và biểu diễn theo k,ta có : A=(2k+2)(2k)(2k+4)(2k−2)A=(2k+2)(2k)(2k+4)(2k−2)
=16k(k−1)(k+1)(k+2)=16(k−1)(k)(k+1)(k+2)=16k(k−1)(k+1)(k+2)=16(k−1)(k)(k+1)(k+2)
Ta nhận thấy (k−1)(k)(k+1)(k+2)(k−1)(k)(k+1)(k+2)là tích của bốn số nguyên dương liên tiếp,tích này chia hết cho 2.3.4 = 24
Vậy tích A đã cho chia hết cho 16.2.3.4 = 384 => đpcm
Ta phân tích biểu thức đã cho ra nhân tử :
A = n4−4n3−4n2+16nA
=[n4−4n3]−[4n2−16n]
=n3(n−4)−4n(n−4)
=n(n−4)[n2−4]
=n(n−2)(n+2)(n−4)
Vì n chẵn và lớn hơn 4 nên ta đặt n = 2k + 2 , trong đó k > 1 và biểu diễn theo k,ta có :
A=(2k+2)(2k)(2k+4)(2k−2)
=16k(k−1)(k+1)(k+2)
=16(k−1)(k)(k+1)(k+2)
Ta nhận thấy (k−1)(k)(k+1)(k+2)(k−1)(k)(k+1)(k+2)là tích của bốn số nguyên dương liên tiếp,tích này chia hết cho 2.3.4 = 24
Vậy tích A đã cho chia hết cho 16.2.3.4 = 384 => đpcm
Ta phân tích biểu thức đã cho ra nhân tử :
A = n4−4n3−4n2+16nA
=[n4−4n3]−[4n2−16n]
=n3(n−4)−4n(n−4)
=n(n−4)[n2−4]
=n(n−2)(n+2)(n−4)
Vì n chẵn và lớn hơn 4 nên ta đặt n = 2k + 2 , trong đó k > 1 và biểu diễn theo k,ta có :
A=(2k+2)(2k)(2k+4)(2k−2)
=16k(k−1)(k+1)(k+2)
=16(k−1)(k)(k+1)(k+2)
Ta nhận thấy (k−1)(k)(k+1)(k+2) là tích của bốn số nguyên dương liên tiếp, tích này chia hết cho 2.3.4 = 24
Vậy tích A đã cho chia hết cho 16.2.3.4 = 384 => đpcm
1.
\(10^{28}+8=\left(10^3\right)^{25}+8=8^{25}.125^{25}+8⋮8\)
Mặt khác:
\(10^{28}+8=10^{28}-1+9=\left(10-1\right).A+9=9A+9⋮9\)
\(\)Mà \(\left(8;9\right)=1\Rightarrow10^{28}+8⋮72\)
Em tham khảo: Câu hỏi của Nghĩa Nguyễn - Toán lớp 9 - Học toán với OnlineMath
Lưu ý là lớp 6 không cần thiết phải viết dấu "=>".
a. Với số tự nhiên n.
Ta có: \(3n+15⋮n+4\) và \(3\left(n+4\right)⋮n+4\)
=> \(\left(3n+15\right)-3\left(n+4\right)⋮n+4\)
=> \(3n+15-3n-12⋮n+4\)
=> \(\left(3n-3n\right)+\left(15-12\right)⋮n+4\)
=> \(3⋮n+4\)
=> \(n+4\in\left\{1;3\right\}\)
+) Với n + 4 = 1 vô lí vì n là số tự nhiên.
+) Với n + 4 = 3 vô lí vì n là số tự nhiên
Vậy không có n thỏa mãn.
b) Với số tự nhiên n.
Có: \(\left(4n+20\right)⋮\left(2n+5\right)\) và \(2\left(2n+5\right)⋮\left(2n+5\right)\)
=> \(\left(4n+20\right)-2\left(2n+5\right)⋮2n+5\)
=> \(4n+20-4n-10⋮2n+5\)
=> \(\left(4n-4n\right)+\left(20-10\right)⋮2n+5\)
=> \(10⋮2n+5\)
=> \(2n+5\in\left\{1;2;5;10\right\}\)
+) Với 2n + 5 = 1 loại
+) với 2n + 5 = 2 loại
+) Với 2n + 5 =5
2n = 5-5
2n = 0
n = 0 Thử lại thỏa mãn
+ Với 2n + 5 = 10
2n = 10 -5
2n = 5
n = 5/2 loại vì n là số tự nhiên.
Vậy n = 0.
Đặt A=n4−4n3−4n2+16n
=n(n3−4n2−4n+16)
=n(n−4)(n2−4)
=(n−4)(n−2)n(n+2)=(n−4)(n−2)n(n+2) (1)(1)
Thế n=2kn=2k (k∈Z+)(k∈Z+) vào (1)(1) được:
n4−4n3−4n2+16nn4−4n3−4n2+16n
=(2k−4)(2k−2)2k(2k+2)=(2k−4)(2k−2)2k(2k+2)
=16.(k−2)(k−1)k(k+1)=16.(k−2)(k−1)k(k+1) (2)(2)
Do (k−2)(k−1)k(k+1)(k−2)(k−1)k(k+1) là 44 số nguyên liên tiếp nên nên tích này luôn chia hết cho 33 và 88, mà ƯC(8,3)=1ƯC(8,3)=1
=>(k−2)(k−1)k(k+1)=>(k−2)(k−1)k(k+1) ⋮⋮ 2424 (3)(3)
Từ (2)(2) và (3)=>(n4−4n3−4n2+16n)(3)=>(n4−4n3−4n2+16n) ⋮⋮ 384384 (đpcm)