Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n + 4 chia hết cho n - 1
=> ( n - 1 ) + 5 chia hết cho n - 1
Mà n - 1 chia hết cho n - 1
=> 5 chia hết cho n - 1
=> n -1 thuộc Ư(5) = { 1 ; 5 }
=> n thuộc { 2 ; 6 }
-8(-7)+(-3).(-5)-(-4).9+2(-6)
=35+15-(-36)+(-12)
=74
15(-3)-(-7).(+2)+4.(-6)-7(-9)
=-45-(-14)+ (-24)-(-63)
8
n+15 chia het cho n-2
n-2+17 chia het cho n-2
suy ra 17 chia hết cho n-2
n-2 | -17 | -1 | 1 | 17 |
n | -15 | 1 | 3 | 19 |
mấy cau sau tuong tu
a) n+5 chia hết cho n-1
=>n-1+6 chia hết cho n-1
=>6 chia hết cho n-1
=> n-1 thuộc Ư(6)={1;2;3;6;-1;-2;-3;-6}
Bảng bn tự kẻ nha còn các câu khác làm tương tự
\(\frac{2n+1}{n-3}=\frac{2n-6+7}{n-3}=2+\frac{7}{n-3}\)
để phân số là số tự nhiên =>\(n-3\inƯ\left(7\right)=\left\{1,7\right\}\)( chắc lớp 6 chưa học số âm bạn nhỉ ? )
\(\orbr{\begin{cases}n-3=1\\n-3=7\end{cases}\Leftrightarrow\orbr{\begin{cases}n=4\\n=10\end{cases}}}\)
Vậy n=4,n=10 thì \(2n+1⋮n-3\)
Câu 2:
gọi số thứ nhất là k
=> 3 số tiếp theo là k+1,k+2,k+3
tổng của 4 số => \(k+\left(k+1\right)+\left(k+2\right)+\left(k+3\right)\)
\(\Rightarrow4k+6\)
Ta có \(4⋮4\Rightarrow4k⋮4\)
6 không chia hết cho 4
=> 4k+6 không chia hết cho 4
=> tổng 4 số tự nhiên liên tiếp không chia hết cho 4
gọi y là số thứ nhất
=> y+1,y+2,y+3,y+4 là 4 số tiếp theo
tổng 5 số = \(y+\left(y+1\right)+\left(y+2\right)+\left(y+3\right)+\left(y+4\right)\)
=\(5y+10\)
ta có 5y chia hết cho 5
10 chia hết cho 5
=> 5y+10 chia hết cho 5
=> tổng 5 số tự nhiên liên tiếp chia hết cho 5
a) 2n - 4 ⋮ n - 3
2n - 6 + 2 ⋮ n - 3
2( n - 3 ) + 2 ⋮ n - 3
Vì 2( n - 3 ) ⋮ n - 3
=> 2 ⋮ n - 3
=> n - 3 thuộc Ư(2) = { 1; -1; 2; -2 }
=> n thuộc { 4; 2; 5; 1 }
Vậy,......
- Các câu còn lại tương tự
\(a,2n-4⋮n-3\Leftrightarrow2n-6+2⋮n-3\)
\(\Leftrightarrow2\left(n-3\right)+2⋮n-3\Leftrightarrow2⋮n-3\left(n-3\inℤ\right)\)
\(\Leftrightarrow n-3\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)\(\Leftrightarrow n\in\left\{2;4;1;5\right\}\)
Vậy \(n=1;2;4;5\)
a, Để \(n\in Z\)
Ta có : \(3n+2⋮2n-1\)
\(6n-3n+2⋮2n-1\)
\(3\left(2n-1\right)+2⋮2n-1\)
Vì 2 \(⋮\)2n-1 hay 2n-1\(\in\)Ư'(2)={1;-1;-2;2}
Ta có bảng
2n-1 | -1 | 1 | 2 | -2 |
2n | 0 | 2 | 3 | -1 |
n | 0 | 1 | 3/2 | -1/2 |
Vậy n = {0;1}
\(b,\frac{n+3}{n-7}=\frac{n-7+10}{n-7}=1+\frac{10}{n-7}\)
=> 10 chia hết cho n - 7
=> n - 7 thuộc Ư\((10)\)
=> n - 7 \(\in\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
Lập bảng :
n - 7 | 1 | -1 | 2 | -2 | 5 | -5 | 10 | -10 |
n | 8 | 6 | 9 | 5 | 12 | 2 | 17 | -3 |
đề sai rồi bn