K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
4 tháng 1 2021

Bạn cần làm gì với biểu thức này thì bạn cần ghi rõ, đầy đủ đề bài thì mọi người mới giúp được chứ!

19 tháng 10 2018

Chữ đẹp ghê :

11 tháng 11 2018

3x2 + 3x2 + 4xy + 2x - 2y + 2 = 0

<=> 2(x2 + 2xy + y2) + (x2 + 2x + 1) + (y2 - 2y + 1) = 0

<=> 2(x + y)2 + (x + 1)2 + (y - 1)2 = 0

<=> \(\left\{{}\begin{matrix}x+y=0\\x+1=0\\y-1=0\end{matrix}\right.\)

M = (x + y)2017 + (x + 2)2018 + (y - 1)2019 = 02017 + (x + 1 + 1)2018 + 02019 = 12018 = 1

28 tháng 8 2019

B=\(x^{2019}-2019.x^{2018}+2019.x^{2017}-...+2019x-1\)

Ta có : 2019 = 1+2018=1+x ( vì x = 2018 )

Suy ra : \(x^{2019}-\left(x+1\right).x^{2018}+\left(x+1\right).x^{2017}-....+\left(x+1\right).x-1\)

=\(x^{2019}-\left(x^{2019}+x^{2018}\right)+\left(x^{2018}+x^{2017}\right)-...+\left(x^2+x\right)-1\)

= \(x^{2019}-x^{2019}-x^{2018}+x^{2018}+x^{2017}-....+x^2+x-1\)

= \(x-1\) mà x =2018

=> \(x-1=2018-1=2017\)

Vậy giá trị của biểu thức B = 2017

14 tháng 3 2019

Phân tích GT đầu , ta có : x = y = z

Rồi làm như thường

14 tháng 3 2019

mình sửa đề nhé~

Có: \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\forall x;y;z\)

\(\Rightarrow2.\left(x^2+y^2+z^2\right)-2xy-2yz-2xz\ge0\forall x;y;z\)

\(\Leftrightarrow2.\left(x^2+y^2+z^2\right)\ge2xy+2yz+2xz\forall x;y;z\)

\(\Leftrightarrow3.\left(x^2+y^2+z^2\right)\ge x^2+y^2+z^2+2xy+2yz+2xz\forall x;y;z\)

\(\Leftrightarrow3.\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\forall x;y;z\)

\(3.\left(x^2+y^2+z^2\right)=\left(x+y+z\right)^2\)

\(\left\{{}\begin{matrix}\left(x-y\right)^2=0\\\left(y-z\right)^2=0\\\left(z-x\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-z=0\\z-x=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=y\\y=z\\x=z\end{matrix}\right.\Leftrightarrow x=y=z\)

Có: \(x^{2018}+y^{2018}+z^{2018}=27^{673}\)

\(\Leftrightarrow3.x^{2018}=27^{673}\)

\(\Leftrightarrow x^{2018}=3^{2018}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)

đến đây bạn tự làm nốt nhé

20 tháng 10 2017

tau méc thầy hùng

26 tháng 12 2017

Ta có:

\(x^{2017}+y^{2017}\le x^{2018}+y^{2018}\)    và x+y=2

Xét dấu =

Dấu ''='' xảy ra khi và chỉ khi

x=y=1

Dấu ''<'' xảy ra khi và chỉ khi x và y khác 1

Hết.

Em mới học lớp 7 nên ko biết đúng ko

21 tháng 12 2017

\(x^{2018}+y^{2018}\ge x^{2017}+y^{2017}\)

\(\Rightarrow\left(x+y\right)\left(x^{2018}+y^{2018}\right)\ge\left(x+y\right)\left(x^{2017}+y^{2017}\right)\)

\(\Rightarrow2\left(x^{2018}+y^{2018}\right)\ge2\left(x^{2017}+y^{2017}\right)\)

\(\Rightarrow2\left(x^{2018}+y^{2018}\right)-\left(x+y\right)\left(x^{2017}+y^{2017}\right)\ge0\)

\(\Rightarrow\left(x-y\right)\left(x^{2017}-y^{2017}\right)\)\(\ge0\)

\(\Rightarrow\left\{{}\begin{matrix}x-y\ge0\\x^{2017}-y^{2017}\ge0\end{matrix}\right.\)

\(\Rightarrow x\ge y\)

Vậy với \(x\ge y\Rightarrowđpcm\)

12 tháng 12 2018

Bạn giải thích bước (x-y)(\(^{x^{2017}-y^{2017}}\)) \(\ge\)0 đi, mk chưa hiểu lắm .

4 tháng 1 2018

\(x^{2017}+y^{2017}\le x^{2018}+y^{2018}\)

\(\Leftrightarrow\left(x+y\right)\left(x^{2017}+y^{2017}\right)\le2\left(x^{2018}+y^{2018}\right)\)

\(\Leftrightarrow xy^{2017}+x^{2017}y\le x^{2018}+y^{2018}\)

\(\Leftrightarrow x^{2018}-x^{2017}y-xy^{2017}+y^{2018}\ge0\)

\(\Leftrightarrow x^{2017}\left(x-y\right)-y^{2017}\left(x-y\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)\left(x^{2017}-y^{2017}\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x^{2016}+x^{2015}y+...+y^{2016}\right)\ge0\)

Đến đây dễ rồi bạn tự làm tiếp nhê

7 tháng 3 2020

Làm tiếp kiểu j bạn???