Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{1}{x}+\frac{1}{y}+xy^2+x^2y=\left(\frac{1}{16x}+xy^2\right)+\left(\frac{1}{16y}+x^2y\right)+\frac{15}{16}\left(\frac{1}{x}+\frac{1}{y}\right)\)
\(\ge\frac{y}{2}+\frac{x}{2}+\frac{15}{16}.\frac{4}{x+y}\)
\(=\left(\frac{x+y}{2}+\frac{1}{2\left(x+y\right)}\right)+\frac{13}{4\left(x+y\right)}\)
\(\ge1+\frac{13}{4}=\frac{17}{4}\)
Dấu "=" xảy ra <=> x = y = 1/2
2x2 +6x x bằng -3
bạn có thể giải thích (x+1)=0 hoặc (x+3)=0 thì khi đó giá trị phân thức sẽ bằng 0
M = x2 + 4x + 2 = ( x2 + 4x + 4 ) - 2 = ( x + 2 )2 - 2 ≥ -2 ∀ x
Dấu "=" xảy ra <=> x = -2 . Vậy MinM = -2
N = 4x2 - 8x + 4 = ( 2x - 2 )2 ≥ 0 ∀ x
Dấu "=" xảy ra <=> x = 1 . Vậy MinN = 0
E = x( x - 6 ) - 6 = x2 - 6x - 6 = ( x2 - 6x + 9 ) - 15 = ( x - 3 )2 - 15 ≥ -15 ∀ x
Dấu "=" xảy ra <=> x = 3 . Vậy MinE = -15
Để `M>=0`
Mà `x^2>=0`
`<=>6-x>0`
`<=>x<6`
Vậy bpt có tập nghiệm `S={x|x<6}`
Để M>=0 thì:
\(\dfrac{x^2}{6}-x>=0\)
<=> \(\dfrac{x^2}{6}>=x\)
<=> x2>=6x
<=> x>=6
Vậy để M>=0 thì x phải thỏa mãn x>=6