Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
\(a^4+b^4\ge a^3b+b^3a\)
\(\Leftrightarrow a^4-a^3b+b^4-b^3a\ge0\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)
ta thấy : \(\orbr{\orbr{\begin{cases}\left(a-b\right)^2\ge0\\\left(a^2+ab+b^2\right)\ge0\end{cases}}}\Leftrightarrow dpcm\)
Dấu " = " xảy ra khi a = b
tk nka !!!! mk cố giải mấy bài nữa !11
Ta luôn có :
\(\left(\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{b}}\right)^2\ge0\forall a,b\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{2}{\sqrt{ab}}\)
\(\Leftrightarrow2\left(\frac{1}{a}+\frac{1}{b}\right)\ge\frac{2}{\sqrt{ab}}+\frac{1}{a}+\frac{1}{b}\)
\(\Leftrightarrow\frac{2\left(a+b\right)}{ab}\ge\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}\right)^2\)
\(\Leftrightarrow\sqrt{\frac{2\left(a+b\right)}{ab}}\ge\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}\)
Tương tự cho 2 BĐT còn lại rồi cộng theo vế :
\(\sqrt{2}\left(\sqrt{\frac{a+b}{ab}}+\sqrt{\frac{b+c}{bc}}+\sqrt{\frac{a+c}{ac}}\right)\)
\(\ge2\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\right)\)
\(\Leftrightarrow\sqrt{\frac{a+b}{ab}}+\sqrt{\frac{b+c}{bc}}+\sqrt{\frac{a+c}{ac}}\ge\sqrt{\frac{2}{a}}+\sqrt{\frac{2}{b}}+\sqrt{\frac{2}{c}}\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c\)
Chúc bạn học tốt !!!
Đặt \(\frac{1}{\sqrt{a}}=x,\frac{1}{\sqrt{b}}=y,\frac{1}{\sqrt{c}}\)=z
Thay vào ta có:\(\sqrt{2}\)(x+y+x)\(\le\)\(\sqrt{\left(x^2+y^2\right)}+\sqrt{x^2+z^2}+\sqrt{\left(y^2+z^2\right)}\)
Ta có bất đẳng thức sau A: (m2+n2)(p2+q2)\(\ge\)(mp+nq)2 dễ dàng chứng mình bằng cách khai triển
áp dụng bdt A với m=x,n=z,p=\(\sqrt{2}\).q=\(\sqrt{2}\) ta được
\(\sqrt{\frac{\left(x^2+z^2\right)\left(\sqrt{2}^2+\sqrt{2}^2\right)}{4}}\ge\sqrt{\left(x\sqrt{2}+z\sqrt{2}\right)^2}\)/2=\(\frac{\sqrt{2}\left(x+y\right)}{2}\)
Tương tự với cái phần tử còn lại ta được điều cần cm
\(\sqrt{a+bc}=\sqrt{a\left(a+b+c\right)+bc}=\sqrt{\left(a+b\right)\left(a+c\right)}\ge\sqrt{\left(a+\sqrt{bc}\right)^2}=a+\sqrt{bc}\)
Tương tự: \(\sqrt{b+ac}\ge b+\sqrt{ac}\) ; \(\sqrt{c+ab}\ge c+\sqrt{ab}\)
\(\Rightarrow VT\ge a+b+c+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}-\sqrt{ab}-\sqrt{bc}-\sqrt{ca}\)
\(\Rightarrow VT\ge a+b+c=1\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)
ĐỀ sai nhé: \(a^2+b^2=4\Rightarrow4-a^2< 0\)
Vậy làm sao tồn tại căn của nó chứ