K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2018

Ta có : 

\(\left|2a-1\right|=\orbr{\begin{cases}2a-1\left(a>0\right)\\1-2a\left(a=0\right)\end{cases}}\)

Đặt \(A=\frac{40\left|2a-1\right|+15}{10a-5}\) 

+) Xét \(a>0\) ta có : 

\(A=\frac{40\left|2a-1\right|+15}{10a-5}\)

\(A=\frac{40\left(2a-1\right)+15}{10a-5}\)

\(A=\frac{80a-40+15}{10a-5}\)

\(A=\frac{80a-40}{10a-5}+\frac{15}{10a-5}\)

\(A=\frac{8\left(10a-5\right)}{10a-5}+\frac{15}{10a-5}\)

\(A=8+\frac{15}{10a-5}\)

Để A nguyên thì \(\frac{15}{10a-5}\) nguyên hay  \(15⋮\left(10a-5\right)\)\(\Rightarrow\)\(\left(10a-5\right)\inƯ\left(15\right)\)

Mà \(Ư\left(15\right)=\left\{1;-1;3;-3;5;-5;15;-15\right\}\)

Suy ra : 

\(10a-5\)\(1\)\(-1\)\(3\)\(-3\)\(5\)\(-5\)\(15\)\(-15\)
\(a\)\(\frac{3}{5}\)\(\frac{2}{5}\)\(\frac{4}{5}\)\(\frac{1}{5}\)\(1\)\(0\)\(2\)\(-1\)

Mà \(a\inℕ\left(a>0\right)\) nên \(a\in\left\{-1;0;1;2\right\}\)

+) Xét \(a=0\) ta có : 

\(A=\frac{40\left|2a-1\right|+15}{10a-5}\)

\(A=\frac{40\left|2.0-1\right|+15}{10.0-5}\)

\(A=\frac{40\left|0-1\right|+15}{0-5}\)

\(A=\frac{40+15}{-5}\)

\(A=-11\) ( A nguyên ) 

Vậy \(a\in\left\{-1;0;1;2\right\}\)

Chúc bạn học tốt ~ 

23 tháng 4 2018

Đặt \(A=\frac{40\left|2a-1\right|+15}{10a-5}\)

\(\left|2a-1\right|=2a-1\)

\(\Rightarrow A=\frac{40.\left(2a-1\right)+15}{10a-5}=\frac{80a-40+15}{10a-5}=\frac{80a-25}{10a-5}\)

Để biểu thức A nhận giá trị nguyên thì \(80a-25⋮10a-5\)

Ta có: \(8\left(10a-5\right)⋮10a-5\)\(\Rightarrow80a-40⋮10a-5\)

\(\Rightarrow80a-25-\left(80a-40\right)⋮10a-5\)

\(\Rightarrow15⋮10a-5\Rightarrow\)\(10a-5\)thuộc Ư(15)

\(Ư\left(15\right)=\left\{1;3;5;15;-1;-3;-5;-15\right\}\)

\(\Rightarrow10a-5\in\left\{1;3;5;15;-1;-3;-5;-15\right\}\)

\(\Rightarrow10a\in\left\{6;8;10;4;3;0;-10\right\}\Rightarrow a\in\left\{\frac{3}{5};\frac{4}{5};1;\frac{2}{5};\frac{3}{10};0;-1\right\}\)

Do \(a\in N\)nên \(a\in\left\{1;0\right\}\)

23 tháng 4 2019

Ta có \(M=\frac{2a+8}{5}+\frac{-a-7}{5}=\frac{2a+8-a-7}{5}=\frac{a+1}{5}\)

Để \(M\inℤ\Leftrightarrow\frac{a+1}{5}\inℤ\Leftrightarrow a+1⋮5\Leftrightarrow a+1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

Ta có bảng sau :

a+11-15-5
a0-24-6

Vậy \(a\in\left\{0;-2;4;-6\right\}\)

29 tháng 4 2017

Đkxđ: a khác 0,5

\(A=\dfrac{\text{40|2a-1|+15}}{10a-5}=\dfrac{40\left|2a-1\right|+15}{5\left(2a-1\right)}=\dfrac{3}{2a-1}_-^+8\)

(Mình để cộng trừ 8 là do còn tùy vào 2a-1 dương hay âm nữa)

Để A nguyên thì \(\dfrac{3}{2a-1}\)nguyên <=>3 chia hết cho 2a-1 <=>2a-1 là Ư(3)

Mà Ư(3)={-3;-1;1;3}

Ta có bảng sau:

2a-1 -3 -1 1 3
a -1 0 1 2

Do a là số tự nhiên và a khác 0,5=>a={0;1;2} thì A nguyên

10 tháng 5 2017

a/ \(\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{\left[a+1\right]\left[a^2+a-1\right]}{\left[a+1\right]\left[a^2+a+1\right]}=\frac{a^2+a-1}{a^2+a+1}\)

 b.Gọi d là ước chung lớn nhất của a2 + a – 1 và a2+a +1.

Vì a2 + a – 1 = a(a+1) – 1 là số lẻ nên d là số lẻ

Mặt khác, 2 = [ a2+a +1 – (a2 + a – 1) ] d

Nên d = 1 tức là a2 + a + 1 và a2 + a – 1 nguyên tố cùng nhau.

 Vậy biểu thức A là phân số tối giản.

5 tháng 5 2019

Để A là phân số thì ta có điều kiện \(n-1\ne0\Rightarrow n\ne1\) . Vậy điều kiện của n là \(n\ne1\)

Để A là số nguyên => \(n-1\inƯ(5)=\left\{\pm1;\pm5\right\}\)

\(n-1\)\(1\)\(-1\)\(5\)\(-5\)
\(n\)\(2\)\(0\)\(6\)\(-4\)
Bài tập 3. Với giá trị nào của số tự nhiên a thì     \(\frac{5\cdot a-17}{4\cdot a-23}\)có giá trị lớn nhất.Bài tập 4. Tìm số tự nhiên n để phân số B = \(\frac{10\cdot n-3}{4\cdot n-10}\) đạt giá trị lớn nhất. Tìmgiá trị lớn nhất đó.Bài tập 5. Tìm số tự nhiên n để phân số \(\frac{7\cdot n-8}{2\cdot n-3}\) có giá trị lớn nhất.Bài tập 6. Tìm x để phân số \(\frac{1}{x^2+1}\) có giá trị lớn...
Đọc tiếp

Bài tập 3. Với giá trị nào của số tự nhiên a thì     \(\frac{5\cdot a-17}{4\cdot a-23}\)có giá trị lớn nhất.

Bài tập 4. Tìm số tự nhiên n để phân số B = \(\frac{10\cdot n-3}{4\cdot n-10}\) đạt giá trị lớn nhất. Tìm

giá trị lớn nhất đó.
Bài tập 5. Tìm số tự nhiên n để phân số \(\frac{7\cdot n-8}{2\cdot n-3}\) có giá trị lớn nhất.
Bài tập 6. Tìm x để phân số \(\frac{1}{x^2+1}\) có giá trị lớn nhất.
Bài tập 7. Tìm giá trị nhỏ nhất của của biểu thức sau: A= \(\frac{6\cdot n-1}{3\cdot n-2}\) (với n là số nguyên )

Bài tập 8: cho phân số A= \(\frac{n+1}{n-3}\) . Tìm n để có giá trị lớn nhất.
Bài tập 9: ho phân số: p= \(\frac{6\cdot n+5}{3\cdot n+2}\) (n \(\in\)  N Với giá trị nào của n thì phân số p
có giá trị lớn nhất? tìm giá trị lớn nhất đó.

0
30 tháng 7 2018

A=\(\frac{2n+5}{n-3}\)=\(\frac{n-3+n+8}{n-3}\)=\(1+\frac{n+8}{n-3}\)=\(1+\frac{n-3+11}{n-3}\)=\(2+\frac{11}{n-3}\) Đk \(n\ne3\)

\(2\in Z\)nên \(\frac{11}{n-3}\in Z\)\(\Rightarrow n-3\inƯ\left(11\right)=\left(1;-1;11;-11\right)\)

+)\(n-3=1\Leftrightarrow n=4\)(TM đk)

+)\(n-3=-1\Leftrightarrow n=2\)(TM đk)

+)\(n-3=11\Leftrightarrow n=14\)(TMđk)

+)\(n-3=-11\Leftrightarrow n=-8\)(TM đk)

Vậy x={4;2;14;-8} thì A\(\in\)Z

30 tháng 7 2018

ĐK: \(n\ne3\)

\(A=\frac{2n-5}{n-3}=\frac{2n-3-2}{n-3}=\frac{2n-3}{n-3}-\frac{2}{n-3}\)\(=2-\frac{2}{n-3}\)

Để \(A\inℤ\Leftrightarrow2-\frac{2}{n-3}\inℤ\Leftrightarrow\frac{2}{n-3}\inℤ\)\(\Leftrightarrow n-3\inƯ\left(2\right)\Leftrightarrow n-3\in\left\{\pm1;\pm3\right\}\)\(\Leftrightarrow n\in\left\{4;2;6;0\right\}\)