Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\left|2a-1\right|=\orbr{\begin{cases}2a-1\left(a>0\right)\\1-2a\left(a=0\right)\end{cases}}\)
Đặt \(A=\frac{40\left|2a-1\right|+15}{10a-5}\)
+) Xét \(a>0\) ta có :
\(A=\frac{40\left|2a-1\right|+15}{10a-5}\)
\(A=\frac{40\left(2a-1\right)+15}{10a-5}\)
\(A=\frac{80a-40+15}{10a-5}\)
\(A=\frac{80a-40}{10a-5}+\frac{15}{10a-5}\)
\(A=\frac{8\left(10a-5\right)}{10a-5}+\frac{15}{10a-5}\)
\(A=8+\frac{15}{10a-5}\)
Để A nguyên thì \(\frac{15}{10a-5}\) nguyên hay \(15⋮\left(10a-5\right)\)\(\Rightarrow\)\(\left(10a-5\right)\inƯ\left(15\right)\)
Mà \(Ư\left(15\right)=\left\{1;-1;3;-3;5;-5;15;-15\right\}\)
Suy ra :
\(10a-5\) | \(1\) | \(-1\) | \(3\) | \(-3\) | \(5\) | \(-5\) | \(15\) | \(-15\) |
\(a\) | \(\frac{3}{5}\) | \(\frac{2}{5}\) | \(\frac{4}{5}\) | \(\frac{1}{5}\) | \(1\) | \(0\) | \(2\) | \(-1\) |
Mà \(a\inℕ\left(a>0\right)\) nên \(a\in\left\{-1;0;1;2\right\}\)
+) Xét \(a=0\) ta có :
\(A=\frac{40\left|2a-1\right|+15}{10a-5}\)
\(A=\frac{40\left|2.0-1\right|+15}{10.0-5}\)
\(A=\frac{40\left|0-1\right|+15}{0-5}\)
\(A=\frac{40+15}{-5}\)
\(A=-11\) ( A nguyên )
Vậy \(a\in\left\{-1;0;1;2\right\}\)
Chúc bạn học tốt ~
Đặt \(A=\frac{40\left|2a-1\right|+15}{10a-5}\)
\(\left|2a-1\right|=2a-1\)
\(\Rightarrow A=\frac{40.\left(2a-1\right)+15}{10a-5}=\frac{80a-40+15}{10a-5}=\frac{80a-25}{10a-5}\)
Để biểu thức A nhận giá trị nguyên thì \(80a-25⋮10a-5\)
Ta có: \(8\left(10a-5\right)⋮10a-5\)\(\Rightarrow80a-40⋮10a-5\)
\(\Rightarrow80a-25-\left(80a-40\right)⋮10a-5\)
\(\Rightarrow15⋮10a-5\Rightarrow\)\(10a-5\)thuộc Ư(15)
\(Ư\left(15\right)=\left\{1;3;5;15;-1;-3;-5;-15\right\}\)
\(\Rightarrow10a-5\in\left\{1;3;5;15;-1;-3;-5;-15\right\}\)
\(\Rightarrow10a\in\left\{6;8;10;4;3;0;-10\right\}\Rightarrow a\in\left\{\frac{3}{5};\frac{4}{5};1;\frac{2}{5};\frac{3}{10};0;-1\right\}\)
Do \(a\in N\)nên \(a\in\left\{1;0\right\}\)
Ta có \(M=\frac{2a+8}{5}+\frac{-a-7}{5}=\frac{2a+8-a-7}{5}=\frac{a+1}{5}\)
Để \(M\inℤ\Leftrightarrow\frac{a+1}{5}\inℤ\Leftrightarrow a+1⋮5\Leftrightarrow a+1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Ta có bảng sau :
a+1 | 1 | -1 | 5 | -5 |
a | 0 | -2 | 4 | -6 |
Vậy \(a\in\left\{0;-2;4;-6\right\}\)
Đkxđ: a khác 0,5
\(A=\dfrac{\text{40|2a-1|+15}}{10a-5}=\dfrac{40\left|2a-1\right|+15}{5\left(2a-1\right)}=\dfrac{3}{2a-1}_-^+8\)
(Mình để cộng trừ 8 là do còn tùy vào 2a-1 dương hay âm nữa)
Để A nguyên thì \(\dfrac{3}{2a-1}\)nguyên <=>3 chia hết cho 2a-1 <=>2a-1 là Ư(3)
Mà Ư(3)={-3;-1;1;3}
Ta có bảng sau:
2a-1 | -3 | -1 | 1 | 3 |
a | -1 | 0 | 1 | 2 |
Do a là số tự nhiên và a khác 0,5=>a={0;1;2} thì A nguyên
a/ \(\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{\left[a+1\right]\left[a^2+a-1\right]}{\left[a+1\right]\left[a^2+a+1\right]}=\frac{a^2+a-1}{a^2+a+1}\)
b.Gọi d là ước chung lớn nhất của a2 + a – 1 và a2+a +1.
Vì a2 + a – 1 = a(a+1) – 1 là số lẻ nên d là số lẻ
Mặt khác, 2 = [ a2+a +1 – (a2 + a – 1) ] d
Nên d = 1 tức là a2 + a + 1 và a2 + a – 1 nguyên tố cùng nhau.
Vậy biểu thức A là phân số tối giản.
Để A là phân số thì ta có điều kiện \(n-1\ne0\Rightarrow n\ne1\) . Vậy điều kiện của n là \(n\ne1\)
Để A là số nguyên => \(n-1\inƯ(5)=\left\{\pm1;\pm5\right\}\)
\(n-1\) | \(1\) | \(-1\) | \(5\) | \(-5\) |
\(n\) | \(2\) | \(0\) | \(6\) | \(-4\) |
A=\(\frac{2n+5}{n-3}\)=\(\frac{n-3+n+8}{n-3}\)=\(1+\frac{n+8}{n-3}\)=\(1+\frac{n-3+11}{n-3}\)=\(2+\frac{11}{n-3}\) Đk \(n\ne3\)
Vì\(2\in Z\)nên \(\frac{11}{n-3}\in Z\)\(\Rightarrow n-3\inƯ\left(11\right)=\left(1;-1;11;-11\right)\)
+)\(n-3=1\Leftrightarrow n=4\)(TM đk)
+)\(n-3=-1\Leftrightarrow n=2\)(TM đk)
+)\(n-3=11\Leftrightarrow n=14\)(TMđk)
+)\(n-3=-11\Leftrightarrow n=-8\)(TM đk)
Vậy x={4;2;14;-8} thì A\(\in\)Z
ĐK: \(n\ne3\)
\(A=\frac{2n-5}{n-3}=\frac{2n-3-2}{n-3}=\frac{2n-3}{n-3}-\frac{2}{n-3}\)\(=2-\frac{2}{n-3}\)
Để \(A\inℤ\Leftrightarrow2-\frac{2}{n-3}\inℤ\Leftrightarrow\frac{2}{n-3}\inℤ\)\(\Leftrightarrow n-3\inƯ\left(2\right)\Leftrightarrow n-3\in\left\{\pm1;\pm3\right\}\)\(\Leftrightarrow n\in\left\{4;2;6;0\right\}\)