Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vận tốc trung bình của người đi xe đạp trên đoạn đường AB là :
(14+16+8) : 3 = 12,6666..... (km/giờ) \(\approx\)12,67 (km/giờ)
Vậy vận tốc trung bình của người đi xe đạp trên đoạn đường AB là 12,67 km/giờ
gọi s là quãng đường AB
s1,s2,s3 lần lượt là từng quãng đường mà xe di chuyển:
s1 = \(\frac{1}{3}s\)
=> s2 + s3 = \(\frac{2}{3}s\)
Thời gian xe di chuyển trong \(\frac{1}{3}\) quãng đường là:
t1 = \(\frac{s_1}{v_1}=\frac{s}{3.40}=\frac{s}{120}\)
Gọi t' là thời gian đi ở quãng đường (\(\frac{2}{3}s\)) còn lại:
Trong \(\frac{2}{3}\) thời gian đầu, xe đi được quãng đường là
s2 = \(\frac{2}{3}t'.v_2=\frac{2}{3}.t'.45=30t'\)
Quãng đường xe đi được trong thời gian còn lại là:
s3=\(\frac{1}{3}t'.v_3=\frac{1}{3}t'.30=10t'\)
Mặt khác ta có
s2 + s3 = \(\frac{2}{3}s\)
=> 30t' + 10t' = \(\frac{2}{3}s\)
=> 40t'=\(\frac{2}{3}s\)
=> t'=\(\frac{s}{60}\)
Vận tốc trung bình của xe là:
\(v_{tb}=\frac{s}{t+t'}=\frac{s}{\frac{s}{120}+\frac{s}{60}}=\frac{1}{\frac{1}{120}+\frac{1}{60}}=40\)(km/h)
Một xe đi từ A về B, trong nửa quãng đương đầu, xe chuyển động với vận tốc v1= 40 km/h. Trên nửa quãng đường sau xe chuyển động thành 2 giai đoạn: nửa thời gian đầu vận tốc v2 = 45 km/h, thời gian còn lại đi với vận tốc v3 = 30 km/h. Tính vận tốc trung bình của xe trên cả quãng đường AB.
Đề phải như này mới đúng
Thời gian đi trên 1/3 đoạn đường đầu là:
\(t_1=\dfrac{AB}{3v_1}=\dfrac{AB}{3.14}=\dfrac{AB}{42}\left(h\right)\)
Thời gian đi trên 1/3 đoạn đường tiếp theo là:
\(t_2=\dfrac{AB}{3v_2}=\dfrac{AB}{3.16}=\dfrac{AB}{48}\left(h\right)\)
Thời gian đi trên 1/3 đoạn đường cuối cùng là:
\(t_3=\dfrac{AB}{3v_3}=\dfrac{AB}{3.8}=\dfrac{AB}{24}\left(h\right)\)
Vận tốc trung bình trên cả quãng đường là:
\(v_{tb}=\dfrac{AB}{t_1+t_2+t_3}=\dfrac{AB}{\dfrac{AB}{42}+\dfrac{AB}{48}+\dfrac{AB}{24}}=\dfrac{AB}{AB\left(\dfrac{1}{42}+\dfrac{1}{48}+\dfrac{1}{24}\right)}=\dfrac{1}{\dfrac{1}{42}+\dfrac{1}{48}+\dfrac{1}{24}}=\dfrac{336}{29}\left(km/h\right)\)
\(=>Vtb=\dfrac{S}{t1+t2+t3}=\dfrac{S}{\dfrac{\dfrac{1}{3}S}{v1}+\dfrac{\dfrac{1}{3}S}{v2}+\dfrac{\dfrac{1}{3}S}{v3}}\)
\(=>vtb=\dfrac{S}{\dfrac{S}{42}+\dfrac{S}{48}+\dfrac{S}{24}}=\dfrac{S}{\dfrac{S\left(48.24+42.24+48.42\right)}{48384}}=\dfrac{48384}{4176}=11,6km/h\)
Gọi S là độ dài của \(\dfrac{1}{3}\) quãng đường
Ta có: \(V_{tb}=\dfrac{S+S+S}{t_1+t_2+t_3}=\dfrac{3S}{t_1+t_2+t_3}\)(*)
Lại có:
\(t_1=\dfrac{S}{V_1}=\dfrac{S}{14}\left(1\right)\)
\(t_2=\dfrac{S}{V_2}=\dfrac{S}{16}\left(2\right)\)
\(t_3=\dfrac{S}{V_3}=\dfrac{S}{8}\left(3\right)\)
Thay \(\left(1\right),\left(2\right),\left(3\right)\) vào (*) ta được:
\(V_{tb}=\dfrac{3S}{\dfrac{S}{14}+\dfrac{S}{16}+\dfrac{S}{8}}=\dfrac{3}{\dfrac{29}{112}}\approx11,6\)(km/h)
Đây là bài của tớ làm mà.