K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2021

Ban tu ve hinh nhe? :D

Hệ kín động lượng được bảo toàn. \(\overrightarrow{p}=\overrightarrow{p_1}+\overrightarrow{p_2}\)

Ta có: \(\left\{{}\begin{matrix}p=mv=250m\left(kg.m/s\right)\\p_1=\dfrac{m}{2}.v_1=125m\left(kg.m/s\right)\end{matrix}\right.\)

Áp dụng định lý hàm cos ta có: 

\(\cos\alpha=\dfrac{p^2+p_1^2-p_2^2}{2p_1p}=\dfrac{250^2m^2+125^2m^2-\dfrac{m^2}{4}v_2^2}{2.250m.125m}\)

\(\Leftrightarrow250.125=250^2+125^2-\dfrac{1}{4}v_2^2\) \(\Rightarrow v_2=\sqrt{187500}\left(m/s\right)\simeq433\left(m/s\right)\)

Gọi \(\beta\) là góc hợp bởi mảnh 2 và phương thẳng đứng: 

\(\cos\beta=\dfrac{p^2+p_2^2-p_1^2}{2p_2p}=\dfrac{250^2+216,5^2-125^2}{2.250.216,5}=0,86\)

\(\Rightarrow\beta\simeq31^0\)

25 tháng 2 2021

mặc định mảnh nhỏ là m1 còn mảnh to là m2 nhé

a) Áp dụng định lý hàm cos: 

\(p_2^2=p_1^2+p^2-2p_1p\cos\left(p_1;p\right)\)

\(\Rightarrow p_2=\sqrt{p_1^2+p^2-2p_1p\cos\left(p_1;p\right)}=....\Rightarrow v_2=\dfrac{p_2}{m_2}\)  Thay số vào nốt là xong bạn

\(\cos\left(p_2;p\right)=\dfrac{p_2^2+p^2-p_1^2}{2p_2p}=.....\) 

b) Mảnh nhỏ bay lên theo phương thẳng đứng cho ta hình dạng của 1 tam giác vuông 

\(p_2=\sqrt{p^2+p_1^2}=\sqrt{\left(mv\right)^2+\left(m_1v_1\right)^2}=...\) \(\Rightarrow v_2=\dfrac{p_2}{m_2}=.....\) (....bạn tự tính điền vào )

\(\cos\left(p_2;p\right)=\dfrac{p}{p_2}=......\) tính nốt :D 

 

 

 

9 tháng 12 2017

Chọn B.

Hệ viên đạn (hai mảnh đạn) ngay khi nổ là một hệ kín nên động lượng hệ được bảo toàn

 

Dấu (-) chứng tỏ mảnh đạn thứ 2 sẽ chuyển động ngược chiều chuyển động ban đầu của viên đạn và mảnh đạn thứ nhất.

26 tháng 11 2017

Lời giải

Ta có:

+ Hệ viên đạn ( hai mảnh đạn) ngay khi nổ là một hệ kín nên động lượng hệ được bảo toàn

+ Gọi m 1 = 0 , 6 m  là khối lượng của mảnh thứ nhất

=> Khối lượng của mảnh còn lại là  m 2 = m − m 1 = m − 0 , 6 m = 0 , 4 m

+ Áp dụng định luật bảo toàn động lượng ta có:  p → = p → 1 + p → 2

m v → = m 1 v → 1 + m − m 1 v → 2

Theo đầu bài, ta có mảnh 1 tiếp tục bay theo hướng cũ

=>  v → 1 ↑ ↑ v →

Ta suy ra:

v 2 = m v − m 1 v 1 m − m 1 = ( 10 − 25.0 , 6 ) m ( 1 − 0 , 6 ) m = − 12 , 5 m / s

Dấu (-) chứng tỏ mảnh đạn thứ 2 sẽ chuyển động ngược chiều chuyển động ban đầu của viên đạn và mảnh đạn thứ nhất.

Đáp án: B

5 tháng 7 2019

Chọn B.

Hệ viên đạn (hai mảnh đạn) ngay khi nổ là một hệ kín nên động lượng hệ được bảo toàn

27 câu trắc nghiệm Động lượng - Định luật bảo toàn động lượng cực hay có đáp án (phần 2)

 

 

 

 

Dấu (-) chứng tỏ mảnh đạn thứ 2 sẽ chuyển động ngược chiều chuyển động ban đầu của viên đạn và mảnh đạn thứ nhất.

25 tháng 2 2021

a) Áp dụng định luật bảo toàn động lượng:

chiều (+) là chiều chuyển động của đạn:

\(0=Mv+mv_0\Rightarrow v=-4\left(m/s\right)\)

=> khẩu pháo chuyển động ngược chiều đạn bay.

b) \(MV=Mv+mv_o\Rightarrow v=1\left(m/s\right)\)

=> Khẩu pháo chuyển động cùng chiều đạn bay.

c) \(-MV=Mv+mv_o\Rightarrow v=-9\left(m/s\right)\)

=> Khẩu pháo chuyển động ngược chiều đạn bay.

Chú thích: V là vận tốc khẩu pháo trước bắn. v là vận tốc khẩu pháo sau bắn và vo là vận tốc viên đạn khi ra khỏi nòng pháo.

25 tháng 2 2021

b,c của cậu sai r kìa !!! lúc chưa bắn phải cộng thêm khối lượng của viên đạn nữa :))

24 tháng 2 2021

p1 = m1v1 = 1.3 = 3kg.m/s

p2 = m2v2 = 3.1 = 3kg.m/s

a) Động lượng của hệ: = 1 + 2 

Độ lớn của hệ: p = p1 + p2 = 3 + 3 = 6kg.m/s

b) Động lượng của hệ: = 1 + 2 

Độ lớn của hệ: p = | p1 - p2 | = | 3 - 3 | = 0kg.m/s

c) Động lượng của hệ: = 1 + 2 

Độ lớn của hệ: \(p=\sqrt{p^2_1+p_2^2}=\sqrt{3^2+3^2}=4,242kg.m/s\)

d) Động lượng của hệ: = 1 + 2 

Độ lớn của hệ: p = p1 = p= 3kg.m/s

25 tháng 2 2021

Bỏ qua ma sát hệ là kín theo phương ngang áp dụng định luật bảo toàn động lượng: 

\(m_1\overrightarrow{v_1}+m_2\overrightarrow{v_2}=\left(m_1+m_2\right)\overrightarrow{v}\left(1\right)\)

Chọn chiều (+) là chiều chuyển động của m1 

a) (1) => \(m_1v_1+m_2v_2=\left(m_1+m_2\right)v\Rightarrow v=\dfrac{m_1v_1+m_2v_2}{m_1+m_2}=\dfrac{4}{3}\left(m/s\right)\) 

vật sau va chạm chuyển động cùng chiều (+)

b) (1) => \(m_1v_1-m_2v_2=\left(m_1+m_2\right)v\Rightarrow v=\dfrac{m_1v_1-m_2v_2}{m_1+m_2}=\dfrac{2}{3}\left(m/s\right)\)

vật sau va chạm chuyển động cùng chiều (+) 

16 tháng 6 2018

Chọn A.

Chọn mốc thế năng tại vị trí cân bằng của con lắc.

Bỏ qua mọi ma sát, cơ năng của con lắc được bảo toàn: W 1 = W 2 = W đ m a x

25 câu trắc nghiệm Ôn tập Chương 4 cực hay có đáp án (phần 2)