Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chu kì dao động: \(T=\dfrac{2\pi}{\omega}=\dfrac{2\pi}{4\pi}=0,5s\)
Ta có: \(x=2,5\sqrt{2}=\dfrac{A\sqrt{2}}{2}\) và đang có xu hướng giảm.
Lúc này vật ở thời điểm: \(t_1=\dfrac{T}{8}\)
Tại thời điểm: \(t=\dfrac{7}{48}s=\dfrac{7T}{14}=\dfrac{T}{8}+\dfrac{T}{6}\)
Dựa vào vòng tròn lượng giác \(\Rightarrow x=2,5cm\)
\(v=x'=6pi\cdot4\cdot cos\left(6pi\cdot t+\dfrac{pi}{6}+\dfrac{pi}{2}\right)\)
\(=24pi\cdot cos\left(6pi\cdot t+\dfrac{2}{3}pi\right)\)
v'=12pi
=>cos(6pi*t+2/3pi)=1/2
=>6pi*t+2/3pi=pi/3+k2pi hoặc 6pi*t+2/3pi=-pi/3+k2pi
=>6pi*t=-1/3pi+k2pi hoặc 6pi*t=-pi+k2pi
=>t=-1/18+k/3 hoặc t=-1/6+k/3
Tần số \(f=\dfrac{\omega}{2\pi}=2,5(hz)\)
Như vậy, khi biểu diễn dao động bằng véc tơ quay thì trong giây đầu tiên véc tơ quay đã quay 2,5 vòng.
O x M 6 3 4 N P
Véc tơ quay xuất phát từ M quay ngược chiều kim đồng hồ, trong giây đầu tiên, nó quay 2,5 vòng
Ta thấy nó qua N, P tổng cộng 4 lần nên dao động điều hòa qua x = 4cm 4 lần.
Phương trình tổng quát: \(x= A cos(\omega t+\varphi)\)
+ Tần số góc: \(\omega = 2\pi/2 = \pi \ (rad/s)\)
+ t=0, vật qua VTCB theo chiều đương \(\Rightarrow\left\{ \begin{array}{} x_0 = 0\ cm\\ v_0 >0 \end{array} \right.\)\(\Rightarrow\left\{ \begin{array}{} \cos \varphi = 0\ cm\\ \sin \varphi <0 \end{array} \right. \Rightarrow \varphi = -\frac{\pi}{2}\)
Vậy phương trình dao động: \(x = 5\cos(\pi t - \frac{\pi}{2})\) (cm)
tại sao lại ra φ=\(\dfrac{-\pi}{2}\) làm cách nào vậy bạn???
Để tìm đáp án thì bạn thay t = 0 vào phương trình dao động điều hòa nhé!
Thay t = 0 vào x = 10. cos (2πt + \(\dfrac{\pi}{6}\)) ta được:
x = 10. cos (\(\dfrac{\pi}{6}\)) = 10. \(\dfrac{\sqrt{3}}{2}\) = \(\dfrac{10\sqrt{3}}{2}\) (cm)
Vậy tại gốc thời gian thì vật có li độ là x = \(\dfrac{10\sqrt{3}}{2}\) (cm)
À mà đúng rồi, bạn để ý chính tả nha, "dao động" chứ không phải là "giao động"!!!