Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`@W_t=mgz=2.10.2=40(J)`
`W_đ=1/2mv^2=1/2 .2.0^2=0(J)`
`W=W_t+W_đ=40+0=40(J)`
`@W_[(W_đ=2W_t)]=W_[đ(W_đ=2W_t)]+W_[t(W_đ=2W_t)]=40`
Mà `W_[đ(W_đ=2W_t)]=2W_[t(W_đ=2W_t)]`
`=>3W_[t(W_đ=2W_t)]=40`
`<=>3mgz_[(W_đ=2W_t)]=40`
`<=>3.2.10.z_[(W_đ=2W_t)]=40`
`<=>z_[(W_đ=2W_t)]~~0,67(m)`
`@W_[đ(max)]=W_[t(max)]=40`
`<=>1/2mv_[max] ^2=40`
`<=>1/2 .2v_[max] ^2=40`
`<=>v_[max]=2\sqrt{10}(m//s)`
Sao lại 3 lần thế năng? Trong khi đó có 2? giải thích giúp em.
1.
lấy gốc thế năng tại mặt đất
cơ năng của vật (xét tại vị trí ban đầu)
\(W=W_t+W_đ=m.g.h+0\) (1)
cơ năng tại vị trí mà thế năng bằng 1/3 cơ năng \(\left(W'_t=\dfrac{1}{3}W'_đ\right)\)
\(W=W'_đ+W'_t\)\(=4W'_t\)\(=4.m.g.h'\) (2)
từ (1),(2)
\(\Rightarrow h'=\)3m
bài 2 tương tự
Cơ năng ban đầu:
\(W=mgz=m\cdot10\cdot9=90m\left(J\right)\)
Cơ năng tại nơi có \(W_đ=\dfrac{1}{2}W_t\Rightarrow W_t=2W_đ\):
\(W'=W_đ+W_t=3W_đ=3\cdot\dfrac{1}{2}mv^2\)
Bảo toàn cơ năng: \(W=W'\)
\(\Rightarrow90m=3\cdot\dfrac{1}{2}mv^2\Rightarrow v=2\sqrt{15}\)m/s
1.
Chọn mốc thế năng tại mặt đất. Gọi h1 là độ cao động năng bằng thế năng
Khi động năng bằng thế năng, ta có:
\(\begin{array}{l}W = {W_d} + {W_t} = 2{W_t}\\ \Leftrightarrow mgh = 2mg{h_1} \Leftrightarrow {h_1} = \frac{h}{2}\\ \Rightarrow {h_1} = \frac{{10}}{2} = 5(m)\end{array}\)
2.
Cơ năng của vật là: \(W = mg{h_1} = 0,5.9,8.0,8 = 3,92(J)\)
Thế năng của vật ở độ cao h2 là: \({W_t} = mg{h_2} = 0,5.9.8.0,6 = 2,94(J)\)
Động năng của vật ở độ cao h2 là: \({W_d} = W - {W_t} = 3,92 - 2,94 = 0,98(J)\)
a. \(v=\sqrt{2gh}=20\left(m/s\right)\)
b. Chọn mốc thế năng tại mặt đất O
Ta có: \(W_1=Wđ_1+Wt_1=mgz_1\) ( v1=0 => Wđ1= 0 )
Xét tổng quát cơ năng của vật tại vị trí động năng bằng n lần thế năng:
\(W_2=Wđ_2+Wt_2=nWt_2+Wt_2=\left(n+1\right)mgz2\)
Vật rơi tức là vật chịu tác dụng của trọng lực nên cơ năng được bảo toàn: \(W_1=W_2\)
\(\Leftrightarrow mgz_1=\left(n+1\right)mgz_2\)
áp dụng vào bài toán với n=1 ta được:
\(\Leftrightarrow z_2=\dfrac{z_1}{n+1}=\dfrac{20}{1+1}=10\left(m\right)\)
c. \(W_O=W_đ+W_t=\dfrac{1}{2}mv^2=\dfrac{1}{2}m\left(\sqrt{2gh}\right)^2=mgh=20\left(J\right)\)
Cơ năng ban đầu:
\(W=mgz=m\cdot10\cdot10=100m\left(J\right)\)
Cơ năng tại nơi \(W_t=W_đ\):
\(W'=W_đ+W_t=2W_t=2mgz'\)
Bảo toàn cơ năng: \(W=W'\)
\(\Rightarrow100m=2mgz'\Rightarrow z'=\dfrac{100}{2\cdot10}=5m\)