Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có phương trình dao động điều hòa của vật là
x= 4Cos(5πt + π/4)
=> T= 2π/ω= 2/5= 0,4
Biểu diễn dao động bằng véc tơ quay:
x 4 -4 -2 M N O 30°
Ban đầu, véc tơ quay xuất phát ở M, để dao động đi được 6cm thì véc tơ quay sẽ quay đến N.
Trên hình vẽ ta tìm được góc quay là: \(\alpha=90+30=120^0\)
Thời gian: \(t=\dfrac{120}{360}T=\dfrac{\pi}{30}\)
\(\Rightarrow T=\dfrac{\pi}{10} (s)\)
\(\Rightarrow \omega=\dfrac{2\pi}{T}=20(rad/s)\)
Cơ năng của vật: \(W=\dfrac{1}{2}.m.\omega^2.A^2=\dfrac{1}{2}.1.20^2.0,04^2=0,32(J)\)
Tần số \(f=\dfrac{\omega}{2\pi}=2,5(hz)\)
Như vậy, khi biểu diễn dao động bằng véc tơ quay thì trong giây đầu tiên véc tơ quay đã quay 2,5 vòng.
O x M 6 3 4 N P
Véc tơ quay xuất phát từ M quay ngược chiều kim đồng hồ, trong giây đầu tiên, nó quay 2,5 vòng
Ta thấy nó qua N, P tổng cộng 4 lần nên dao động điều hòa qua x = 4cm 4 lần.
Phương trình tổng quát: \(x= A cos(\omega t+\varphi)\)
+ Tần số góc: \(\omega = 2\pi/2 = \pi \ (rad/s)\)
+ t=0, vật qua VTCB theo chiều đương \(\Rightarrow\left\{ \begin{array}{} x_0 = 0\ cm\\ v_0 >0 \end{array} \right.\)\(\Rightarrow\left\{ \begin{array}{} \cos \varphi = 0\ cm\\ \sin \varphi <0 \end{array} \right. \Rightarrow \varphi = -\frac{\pi}{2}\)
Vậy phương trình dao động: \(x = 5\cos(\pi t - \frac{\pi}{2})\) (cm)
tại sao lại ra φ=\(\dfrac{-\pi}{2}\) làm cách nào vậy bạn???
Tần số f = 2,5 Hz.
Biểu diễn dao động bằng véc tơ quay ta có:
3 -3 M 1 -1 O x N
Do pha ban đầu bằng \(-\frac{2\pi}{3} \) nên chất véc tơ quay xuất phát từ M, quay được 2,5 vòng (ứng với 2,5Hz) trong một giây. Nhận thấy hình chiếu của M qua li độ 1cm 4 lần trong 2 vòng đầu, nửa vòng cuối quay chỉ đến N nên hình chiếu chưa qua li độ 1 cm. Do vậy dao động qua li độ 1cm là 4 lần trong giây đầu tiên.