K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2015

Biểu diễn dao động điều hòa bằng véc tơ quay, trong thời gian T/4, véc tơ quay một góc 360/4 = 900.

Quãng đường lớn nhất khi vật có tốc độ trung bình lớn nhất --> vật chuyển động quanh VTCB từ góc 450trái đến 450 phải.

A -A 45 45 M N

\(S_{max}=MN=2.A\cos45^0=A\sqrt{2}\)

30 tháng 9 2015

Chọn D

18 tháng 9 2015

30 10 -10 M N

Vật cách VTCB không quá 10cm, suy ra:|x|<10cm

Vị trí đó được biểu diễn như véc tơ quay trên hình vẽ. 

1/3 chu kỳ, véc tơ quay 1/3 * 360 = 1200

Như vậy, mỗi góc nhỏ là 300 như hình vẽ, suy ra biên độ là 2.10 = 20cm

Quãng đường vật đi đc lớn nhất khi nó đi quanh VTCB. Trong thời gian 1/6 chu kỳ, góc quay là 1/6 * 360 = 600 

Như vậy, ứng với véc tơ quay từ M đến N.

Quãng đường Max = 10 + 10 = 20cm.

18 tháng 9 2015

Chọn C.

O
ongtho
Giáo viên
5 tháng 10 2015

Áp dụng công thức độc lập: \(A^2 = x^2 +\frac{v^2}{\omega ^2} \Rightarrow v=\omega\sqrt{A^2-x^2} = \frac{2\pi}{T}\sqrt{A^2-(\frac{A}{2})^2} = \frac{\sqrt{3} \pi A}{T} \)

30 tháng 9 2015

Phương trình tổng quát: \(x = Acos(\omega t +\varphi)\)

\(\omega = 2\pi f = 2\pi .10 = 20\pi \ (rad/s) \)

+ A = 4cm.

+ t = 0, vật qua x0 = A \(\Rightarrow\left\{ \begin{array}{} x_0 = 4\ cm\\ v_0 =0 \end{array} \right.\)\(\Rightarrow\left\{ \begin{array}{} \cos \varphi = 1\ cm\\ \sin \varphi = 0 \end{array} \right. \Rightarrow \varphi = 0\)

Vậy phương trình dao động: \(x = 4\cos(20\pi t) \ (cm)\)

 
12 tháng 7 2023

Làm sao để từ hệ ptr 1 suy ra đc hệ ptr 2 ạ

O
ongtho
Giáo viên
19 tháng 11 2015

Gia tốc biểu kiến của con lắc nằm trong thang máy chuyển động với gia tốc \(\overrightarrow a\) là:

 \(\overrightarrow {g'} = \overrightarrow {g} -\overrightarrow a \)

Thang máy đi lên chậm dần đều nên \(\overrightarrow g \uparrow \uparrow \overrightarrow a\) => \( {g'} ={g} -a \)

Mà \(a = \frac{g}{2} => g' = g - \frac{g}{2} = \frac{g}{2}.\)

Chu kì của con lắc lúc này là \(T' =2\pi \sqrt{\frac{l}{g}} = 2\pi \sqrt{\frac{2l}{g}} = T\sqrt{2}.\)

 

30 tháng 9 2015

Biên độ: A = 16/4 = 4cm.

Biểu diễn dao động điều hòa bằng véc tơ quay. Khi vật đi từ x1 đến x2 thì véc tơ quay một góc là:

\(30+60=90^0\)

Thời gian tương ứng: \(\frac{90}{360}T=\frac{1}{4}.0,4=0,1s\)

Tốc độ trung bình: \(v_{TB}=\frac{S}{t}=\frac{2+2\sqrt{3}}{0,1}=54,64\)(cm/s)

30 tháng 9 2015

Chọn B

27 tháng 11 2015

Do mạch chỉ có tụ C thì u vuông pha với i, nên ta có:

\(\left(\frac{u}{U_0}\right)^2+\left(\frac{i}{I_0}\right)^2=1\)

\(\Rightarrow\left(\frac{60}{U_0}\right)^2+\left(\frac{\sqrt{3}}{I_0}\right)^2=1\)

\(\left(\frac{60\sqrt{2}}{U_0}\right)^2+\left(\frac{\sqrt{2}}{I_0}\right)^2=1\)

\(\Rightarrow\begin{cases}U_0=120V\\I_0=2A\end{cases}\)

27 tháng 10 2015

Tốc độ trung bình của vật là \(v = \frac{\text{quãng đường đi được}}{t}\)

(chú ý là tốc độ trung bình khác với vận tốc trung bình vì vận tốc trung bình = \(\frac{x_{cuoi}-x_{dau}}{t}\))

Dùng đường tròn để tìm quãng đường và thời gian đi

4 -4 2 3 2 3 - M N a π/6 π/6 H K

Vật đi được từ điểm N (\(x = -2\sqrt{3}\) hường theo chiều dương của trục x) đến điểm M (\(x = 2\sqrt{3}\) hướng theo chiều dương của trục x) tức là ứng với cung \(\stackrel\frown{NaM}\)

Quãng đường đi được là: \(S = HK= 2\sqrt{3}+ 2\sqrt{3} = 4\sqrt{3}cm.\)

Thời gian đi \(t = \frac{\varphi}{\omega} = \frac{\pi/3+\pi/3}{8\pi} = \frac{1}{12}s.\)

Vận tốc trung bình là \(v = \frac{4\sqrt{3}}{1/12} = 48 \sqrt{3}cm/s.\)

Chọn đáp án. D

12 tháng 4 2020

Làm sao biết được là pi/6 vậy ạ. C chỉ giúp mình được không ạ?

1 tháng 10 2015

Phương trình tổng quát: \(x = Acos(\omega t +\varphi)\)

\(\omega = \frac{2\pi}{T} = \frac{2\pi}{2} = \pi\) (rad/s)

+ Nhận xét: Trong 2s = 1T, vật đi quãng đường 4.A = 40 cm, \(\Rightarrow\) A=10cm.

+ t = 0, vật qua VTCB theo chiều dương \(\Rightarrow\left\{ \begin{array}{} x_0 = 0\ cm\\ v_0 >0 \end{array} \right.\)\(\Rightarrow\left\{ \begin{array}{} \cos \varphi = 0\ \\ \sin \varphi <0 \end{array} \right. \Rightarrow \varphi = -\frac{\pi}{2}\)

Vậy phương trình: \(x = 10cos(\pi t -\frac{\pi}{2})\) (cm)

30 tháng 9 2015

Phương trình tổng quát: \(x= A cos(\omega t+\varphi)\)

+ Tần số góc: \(\omega = 2\pi/2 = \pi \ (rad/s)\)

+ t=0, vật qua VTCB theo chiều đương \(\Rightarrow\left\{ \begin{array}{} x_0 = 0\ cm\\ v_0 >0 \end{array} \right.\)\(\Rightarrow\left\{ \begin{array}{} \cos \varphi = 0\ cm\\ \sin \varphi <0 \end{array} \right. \Rightarrow \varphi = -\frac{\pi}{2}\)

Vậy phương trình dao động: \(x = 5\cos(\pi t - \frac{\pi}{2})\) (cm)

19 tháng 5 2018

tại sao lại ra φ=\(\dfrac{-\pi}{2}\) làm cách nào vậy bạn???