K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2023

$[v(t) = \frac{ds(t)}{dt} = \frac{d}{dt}(2t^3+4t+1)]$

$[a(t) = \frac{dv(t)}{dt} = \frac{d}{dt}(6t^2 + 4)]$

$[a(t) = 12t]$

Khi (t = 1), ta có:

$[v(1) = 6(1)^2 + 4 = 10 , \text{m/s}]$4

$[a(1) = 12(1) = 12 , \text{m/s}^2]$

Vậy, khi (t = 1), vận tốc của vật là 10 m/s và gia tốc của vật là $12 m/s$

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Vận tốc tức thời của chuyển động tại \(t = 2\) là:

\(\begin{array}{l}v\left( 2 \right) = s'\left( 2 \right) = \mathop {\lim }\limits_{t \to 2} \frac{{s\left( t \right) - s\left( 2 \right)}}{{t - 2}} = \mathop {\lim }\limits_{t \to 2} \frac{{\left( {4{t^3} + 6t + 2} \right) - \left( {{{4.2}^3} + 6.2 + 2} \right)}}{{t - 2}}\\ = \mathop {\lim }\limits_{t \to 2} \frac{{4{t^3} + 6t + 2 - 46}}{{t - 2}} = \mathop {\lim }\limits_{t \to 2} \frac{{4{t^3} + 6t - 44}}{{t - 2}} = \mathop {\lim }\limits_{t \to 2} \frac{{2\left( {t - 2} \right)\left( {2{t^2} + 4t + 11} \right)}}{{t - 2}}\\ = \mathop {\lim }\limits_{t \to 2} 2\left( {2{t^2} + 4t + 11} \right) = 2\left( {{{2.2}^2} + 4.2 + 11} \right) = 54\end{array}\)

Vậy vận tốc tức thời của chuyển động lúc \(t = 2\) là: \(v\left( 2 \right) = 54\left( {m/s} \right)\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) Vận tốc tức thời \(v\left( t \right)\) tại thời điểm \(t\) là: \(v\left( t \right) = s'\left( t \right) = 6{t^2} + 4\).

b) Gia tốc \(a\left( t \right)\) của chuyển động tại thời điểm \(t\) là: \(a\left( t \right) = v'\left( t \right) = 12t\).

Gia tốc của chuyển động tại thời điểm \(t = 2\) là: \(a\left( 2 \right) = 12.2 = 24\).

13 tháng 6 2017

Chọn C

10 tháng 1 2017

Vận tốc: v(t) = S’(t) = (t3 – 3t2 – 9t)' = 3t2 – 6t – 9.

Gia tốc : a(t) = v’(t) = (3t2 – 6t – 9)’ = 6t – 6.

a) Khi t = 2s, v(2) = 3.22 – 6.2 – 9 = -9 (m/s).

b) Khi t = 3s, a(3) = 6.3 – 6 = 12 (m/s2).

c) v(t) = 0 ⇔ 3t2 – 6t – 9 = 0 ⇔ t = 3 (vì t > 0).

Khi đó a(3) = 12 m/s2.

d) a(t) = 0 ⇔ 6t – 6 = 0 ⇔ t = 1.

Khi đó v(1) = 3.12 – 6.1 – 9 = -12 (m/s).

Quãng đường rơi tự do của một vật được biểu diễn bởi công thức \(s\left( t \right) = 4,9{t^2}\) với \(t\) là thời gian tính bằng giây và \(s\) tính bằng mét.Vận tốc trung bình của chuyển động này trên khoảng thời gian \(\left[ {5;t} \right]\) hoặc \(\left[ {t;5} \right]\) được tính bằng công thức \(\frac{{s\left( t \right) - s\left( 5 \right)}}{{t - 5}}\).a) Hoàn thiện bảng sau về vận tốc trung bình trong những...
Đọc tiếp

Quãng đường rơi tự do của một vật được biểu diễn bởi công thức \(s\left( t \right) = 4,9{t^2}\) với \(t\) là thời gian tính bằng giây và \(s\) tính bằng mét.

Vận tốc trung bình của chuyển động này trên khoảng thời gian \(\left[ {5;t} \right]\) hoặc \(\left[ {t;5} \right]\) được tính bằng công thức \(\frac{{s\left( t \right) - s\left( 5 \right)}}{{t - 5}}\).

a) Hoàn thiện bảng sau về vận tốc trung bình trong những khoảng thời gian khác nhau. Nêu nhận xét về \(\frac{{s\left( t \right) - s\left( 5 \right)}}{{t - 5}}\) khi \(t\) càng gần 5. 

b) Giới hạn \(\mathop {\lim }\limits_{t \to 5} \frac{{s\left( t \right) - s\left( 5 \right)}}{{t - 5}}\) được gọi là vận tốc tức thời của chuyển động tại thời điểm \({t_0} = 5\). Tính giá trị này.

c) Tính giới hạn \(\mathop {\lim }\limits_{t \to {t_0}} \frac{{s\left( t \right) - s\left( {{t_0}} \right)}}{{t - {t_0}}}\) để xác định vận tốc tức thời của chuyển động tại thời điểm \({t_0}\) nào đó trong quá trình rơi của vật.

1
22 tháng 9 2023

a)

\(\begin{array}{l}\begin{array}{*{20}{l}}{\left[ {5;5,1} \right]}\end{array}:t = 5,1 \Rightarrow \frac{{s\left( t \right) - s\left( 5 \right)}}{{t - 5}} = \frac{{4,9.5,{1^2} - 4,{{9.5}^2}}}{{5,1 - 5}} = 49,49\\\begin{array}{*{20}{l}}{\left[ {5;5,05} \right]}\end{array}:t = 5,05 \Rightarrow \frac{{s\left( t \right) - s\left( 5 \right)}}{{t - 5}} = \frac{{4,9.5,{{05}^2} - 4,{{9.5}^2}}}{{5,05 - 5}} = 49,245\\\begin{array}{*{20}{l}}{\left[ {5;5,01} \right]}\end{array}:t = 5,01 \Rightarrow \frac{{s\left( t \right) - s\left( 5 \right)}}{{t - 5}} = \frac{{4,9.5,{{01}^2} - 4,{{9.5}^2}}}{{5,01 - 5}} = 49,049\\\begin{array}{*{20}{l}}{\left[ {5;5,001} \right]}\end{array}:t = 5,001 \Rightarrow \frac{{s\left( t \right) - s\left( 5 \right)}}{{t - 5}} = \frac{{4,9.5,{{001}^2} - 4,{{9.5}^2}}}{{5,001 - 5}} = 49,0049\\\begin{array}{*{20}{l}}{\left[ {4,999;5} \right]}\end{array}:t = 4,999 \Rightarrow \frac{{s\left( t \right) - s\left( 5 \right)}}{{t - 5}} = \frac{{4,9.4,{{999}^2} - 4,{{9.5}^2}}}{{4,999 - 5}} = 48,9951\\\begin{array}{*{20}{l}}{\left[ {4,99;5} \right]}\end{array}:t = 4,99 \Rightarrow \frac{{s\left( t \right) - s\left( 5 \right)}}{{t - 5}} = \frac{{4,9.4,{{99}^2} - 4,{{9.5}^2}}}{{4,99 - 5}} = 48,951\end{array}\)

 

Ta thấy: \(\frac{{s\left( t \right) - s\left( 5 \right)}}{{t - 5}}\) càng gần 49 khi \(t\) càng gần 5.

b)

\(\begin{array}{l}\mathop {\lim }\limits_{t \to 5} \frac{{s\left( t \right) - s\left( 5 \right)}}{{t - 5}} = \mathop {\lim }\limits_{t \to 5} \frac{{4,9{t^2} - 4,{{9.5}^2}}}{{t - 5}} = \mathop {\lim }\limits_{t \to 5} \frac{{4,9\left( {{t^2} - {5^2}} \right)}}{{t - 5}} = \mathop {\lim }\limits_{t \to 5} \frac{{4,9\left( {t - 5} \right)\left( {t + 5} \right)}}{{t - 5}}\\ = \mathop {\lim }\limits_{t \to 5} 4,9\left( {t + 5} \right) = 4,9\left( {5 + 5} \right) = 49\end{array}\)

c)

\(\begin{array}{l}\mathop {\lim }\limits_{t \to {t_0}} \frac{{s\left( t \right) - s\left( {{t_0}} \right)}}{{t - {t_0}}} = \mathop {\lim }\limits_{t \to 5} \frac{{4,9{t^2} - 4,9.t_0^2}}{{t - {t_0}}} = \mathop {\lim }\limits_{t \to 5} \frac{{4,9\left( {{t^2} - t_0^2} \right)}}{{t - t_0^2}} = \mathop {\lim }\limits_{t \to 5} \frac{{4,9\left( {t - {t_0}} \right)\left( {t + {t_0}} \right)}}{{t - {t_0}}}\\ = \mathop {\lim }\limits_{t \to 5} 4,9\left( {t + {t_0}} \right) = 4,9\left( {{t_0} + {t_0}} \right) = 9,8{t_0}\end{array}\)

4 tháng 4 2017

Trả lời:

a) Vận tốc của chuyển động khi t = 2 (s).

Ta có:

v=dsdt=S′=3t2−6t−9v=dsdt=S′=3t2−6t−9

Khi t = 2(s) ⇒ 3.22 – 6.22 – 9 = -9 m/s.

b) Gia tốc của chuyển động khi t = 3(s). Ta có:

a=dvdt=v′=6t−6a=dvdt=v′=6t−6

Ở t = 3(s) ⇒ a = 6.3 – 6 = 12 m/s2

c) Ta có: v = 3t2 – 6t – 9

Tại thời điểm vận tốc triệt tiêu:

v=0⇔3t2−6t−9=0⇔t2−2t−3=0⇔[t=−1(l)t=3(s)v=0⇔3t2−6t−9=0⇔t2−2t−3=0⇔[t=−1(l)t=3(s)

Gia tốc: a = 6t – 6.

Khi t = 3s ⇒ a = 6.3 – 6 = 12 m/s2

d) Ta đã có a = 6t – 6.

Khi a = 0 ⇔ 6t – 6= 0 ⇔ t = 1(s)

Lại có: v = 3t2 – 6t – 9

Khi t = 1(s) ⇒ v = 3.12 – 6.1 – 9 = -12 m/s



2 tháng 5 2017

câu b.. v'=6t-6 là s v bạn??

7 tháng 1 2018

Chọn D.

Gia tốc chuyển động tại t = 3s là s”(3)

Ta có: s’(t) = 54 và s’’(t) = 0

Vậy vật chuyển động với gia tốc là 0 nên tại t = 3 thì a = 0.

9 tháng 3 2019

- Gia tốc tức thời của chuyển động tại thời điểm t bằng đạo hàm cấp hai của phương trình chuyển động tại thời điểm t.

- Ta có:

Đề kiểm tra 15 phút Đại số 11 Chương 5 có đáp án (Đề 2)

- Suy ra, phương trình gia tốc của chuyển động là:

   a(t) = s’’(t) = 6t – 6  ( m / s 2 )

- Do đó, gia tốc của chuyển động khi t = 3 là: a(3) = 12 ( m / s 2 )

Chọn D.

13 tháng 9 2017

Đáp án D

Ta có gia tốc tức thời của chuyển động tại thời điểm t bằng đạo hàm cấp hai của phương trình chuyển động tại thời điểm t.

s ' = t 3 - 3 t 2 + 5 t + 2 ' = 3 t 2 - 6 t + 5

s ' ' = 6 t - 6 ⇒ s ' ' 3 = 12