Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Quãng ngược dòng 20 phút
\(=>S1=\left(vt-vn\right).\dfrac{1}{3}\left(km\right)\)(thuyền 20 phút)
\(=>S2=vn.\dfrac{1}{3}\left(km\right)\)(phao trôi 20ph)
quãng xuôi dòng
\(=>S3=\left(vt+vn\right)t1\left(km\right)\)(thuyền xuôi dòng)
\(=>S4=vn.t1\left(km\right)\)(phao chuyển động)
\(=>S3-S1=3=>\left(vt+vn\right)t1-\dfrac{\left(vt-vn\right)}{3}=3\)
\(=>S2+S4=3< =>\dfrac{vn}{3}+vn.t1=3\)
\(=>\left(vt+vn\right)t1-\dfrac{\left(vt-vn\right)}{3}=\dfrac{vn}{3}+vn.t1\)
\(< =>\)\(t1=\dfrac{1}{3}h=>\dfrac{vn}{3}+\dfrac{vn}{3}=3=>vn=4,5km/h\)
chị có copy không đấy ?? làm nhanh vậy được, em nháp xong chị đã xong
https://lazi.vn/edu/exercise/mot-nguoi-danh-ca-boi-thuyen-nguoc-dong-song-khi-toi-cau-bac-ngang-qua-song-nguoi-do-danh-roi
Link ấy làm quá dài dòng
Giải:
- Gọi \(A\) là điểm thuyền làm rơi phao.
\(v_1\) là vận tốc của thuyền đối với nước
\(v_2\) là vận tốc của nước đối với bờ.
Trong khoảng thời gian \(t_1=30\) phút thuyền đi được:
\(s_1=\left(v_1-v_2\right).t_1\)
Trong thời gian đó phao trôi được một đoạn: \(s_2=v_2t_1\)
- Sau đó thuyền và phao cùng chuyển động trong thời gian \(\left(t\right)\) đi được quãng đường \(s_2'\) và \(s_1'\) gặp nhau tại \(C\)
Ta có:
\(s_1'=\left(v_1+v_2\right).t;s_2=v_2t\)
Theo đề bài ta có:
\(s_2+s_2'=5\) Hay \(v_2t_1+v_2t=5\left(1\right)\)
Mặt khác: \(s_1'-s_1=5\)
Hay \(\left(v_1+v_2\right).t-\left(v_1-v_2\right).t_1=5\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\Rightarrow t_1=t\)
Từ \(\left(1\right)\Rightarrow v_2=\dfrac{5}{2t_1}=5\left(\dfrac{km}{h}\right)\)
Vậy vận tốc của dòng nước là \(5km/h\)
Đây vào đây mà xem.
hoc24.vn/hoi-dap/question/138823.html
Gọi vị trí rơi phao là A
Vị trí thuyền quay lại là B
Thuyền gặp phao tại C
Gọi vận tốc thuyền là v1, vận tốc của nước là vn.Đk : v1, vn >0
Theo đề ra ta có :
\(t_{\text{phao }}=t_{\text{thuyền }}\)
\(\Rightarrow t_{AC}=t_{AB}+t_{BC}\)
\(\Rightarrow\dfrac{s_{AC}}{v_n}=\dfrac{1}{2}+\dfrac{s_{AB}}{v_1+v_n}\)
\(\Rightarrow\dfrac{5}{v_n}=\dfrac{1}{2}+\dfrac{5+\dfrac{\left(v_1-v_n\right)}{2}}{v_1+v_n}\)
\(\Rightarrow v_n=5km/h\)
Đổi 30 phút = 0,5 h
Gọi vận tốc của thuyền đối với nước là v1 và vận tốc của nước đối với bờ là v2 ( v1> v2 > 0 km/h )
\(\rightarrow\) Vận tốc của thuyền khi đi xuôi dòng là: vx = v1 + v2
Vận tốc của thuyền khi đi ngược dòng là: vng = v1 - v2
\(\Rightarrow\) Quãng đường thuyền đi ngược dòng trong 0,5 h là:
Sng = tng . vng = 0,5 .(v1 - v2 ) (km)
Khoảng cách từ chỗ thuyền quay lại đến chỗ thuyền gặp phao là:
S = Sng + 5 = 0,5.v1 - 0,5.v2 + 5 (km)
Khi quay lại thì thuyền đi xuôi dòng
\(\rightarrow\) Thời gian thuyền đi hết quãng đường S là
tx = \(\dfrac{S}{v_x}\) = \(\dfrac{0,5.v_1-0,5.v_2+5}{v_1+v_2}\) (h)
Thời gian từ lúc phao rơi cho đến khi gặp lại phao là:
tthuyen = tn + tx = 0,5 + \(\dfrac{0,5.v_1-0,5.v_2+5}{v_1+v_2}\) = \(\dfrac{v_1+5}{v_1+v_2}\) (h) (1)
Khi phao rơi thì phao trôi theo vận tốc dòng nước v2
\(\rightarrow\) Thời gian từ lúc phao trôi đến khi phao gặp lại thuyền là:
t1 = tphao = \(\dfrac{5}{v_2}\) (h) (2)
Từ (1) và (2) \(\Rightarrow\) v1 ( v2 - 5 ) = 0
\(\Rightarrow\) v2 = 5 (km/h)
Vậy vận tốc của dòng nước là 5km/h
bn giải rõ ra chỗ này giúp mk: Từ (1) và (2) ⇒⇒ v1 ( v2 - 5 ) = 0 mk không hiểu
Gọi A là điểm thuyền làm rơi phao. Trong t1 = \(\frac{1}{2}\)h = 30' thuyền đã đi được quãng đường: s1 = (v1 - v2) . t1
Với: v1 là vận tốc thuyền đối với nước.
v2 là vận tốc nước đối với bờ.
Trong thời gian đó phao trôi theo dòng nước một đoạn:
s2 = v2 . t1
Sau đó thuyền và phao cùng chuyển động trong thời gian t và đi được các quãng đường tương ứng s'1 và s'2 đến gặp nhau tại C. Ta có:
s'1 = (v1 + v2)t ; s'2 = v2.t
Theo đề bài ra, ta có: s2 + s'2 = 5
hay: v2t1 + v2t = 5 (1)
Mặt khác: s'1 - s1 = 5
hay (v1 + v2)t - (v1 - v2)t1 = 5 (2)
Từ (1) và (2) => t1 = t
(1) => v2 = \(\frac{5}{2t_1}=5\)(km/h)
Vậy vận tốc dòng nước là 5 km/h.
Gọi vị trí của cây cầu là A, B là vị trí thuyền quay lại tìm phao, C là vị trí thuyền gặp phao.
Gọi v1 và v2 là vận tốc của thuyền và nước chảy.
Đoạn đường thuyền đi được đến lúc quay lại là:
\(S_{AB}=\left(v_1-v_2\right)1=v_1-v_2\left(km\right)\)
Đoạn đường thuyền đi từ lúc quay lại đến lúc gặp phao là:
\(S_{BC}=S_{AB}+S_{AC}=v_1-v_2+6\left(km\right)\)
Thời gian thuyền đi hết quãng đường đó là:
\(t_{BC}=\dfrac{S_{BC}}{v_1+v_2}=\dfrac{v_1-v_2+6}{v_1+v_2}\left(h\right)\)
Thời gian từ lúc thuyền làm rơi phao đến lúc thuyền gặp phao là:
\(t=t_{BC}+1=\dfrac{v_1-v_2+6}{v_1+v_2}+1\left(h\right)\)
Lại có:\(t=\dfrac{S_{AC}}{v_2}=\dfrac{6}{v_2}\left(h\right)\)
\(\Rightarrow\dfrac{6}{v_2}=\dfrac{v_1-v_2+6}{v_1+v_2}+1\\ \Leftrightarrow2v_2=6\\ \Leftrightarrow v_2=3\left(\text{km/h}\right)\)
Vận tốc nước là 3km/h
- -Chọn vật mốc là dòng nước => Phao sẽ đứng yên và khi xuôi dòng hay ngược dòng thì vận tốc của thuyền là V1
-Như vậy thời gian thuyền ra xa phao cũng bằng thời gian thuyền quay lại gặp phao => thời gian thuyền i và quay lại gặp phao là : t= 1h +1h =2h
-Theo đề bài thì phao trôi được 6 Km và thời gian phao trôi bằng thời gian thuyền đã đi và quay lại gặp phao nên thời gian phao trôi là 2h
Vận tốc của phao hay vận tốc của dòng nước là : V2= 6/2= 3 Km/h
Gọi vận tốc nước so với bờ và nước lần lượt là v1 và v2, vận tốc dòng nước là vn. Gọi thời gian thuyền đi từ A--B là t1, đi từ B--C là t2.
Quãng đường thuyền đi trong thời gian t1 (A--B), t2 (B--C) và quãng đường phao trôi được trong thời gian t1 (A--D), t2 (D--C) là:
\(S_{AB}=\left(v_2-v_n\right)t_1\)
\(S_{BC}=\left(v_2+v_n\right)t_2\)
\(S_{AD}=v_n.t_1\)
\(S_{CD}=v_n.t_2\)
Do BC = AB+AD+DC
\(\Rightarrow\left(v_2+v_n\right)t_2=\left(v_2-v_n\right)t_1+v_n.t_1+v_n.t_2\)
Giải phương trình ta được t2 = t1 = 0,5 (h)
Do AC = AD+DC
\(\Rightarrow AC=v_n.t_1+v_n.t_2\)
Giải phương trình ta được AC = vn
Vận tốc dòng nước là 5km/h
A B C Nước D t1=30' 5km t1 Rơi phao Quay lại Gặp phao
tại sao đang đi ngược dòng nước mà phao vẫn trôi từ a->d theo sơ đồ trên được???